Analysis Beispiele
,
Schritt 1
Schritt 1.1
Differenziere beide Seiten der Gleichung.
Schritt 1.2
Die Ableitung von nach ist .
Schritt 1.3
Differenziere die rechte Seite der Gleichung.
Schritt 1.3.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 1.3.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 1.3.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.3.1.3
Ersetze alle durch .
Schritt 1.3.2
Differenziere.
Schritt 1.3.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.2.3
Vereinfache den Ausdruck.
Schritt 1.3.2.3.1
Mutltipliziere mit .
Schritt 1.3.2.3.2
Stelle die Faktoren in um.
Schritt 1.4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 2
Schritt 2.1
Bestimme die Ableitung.
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Schritt 2.3.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.3.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.3.3
Ersetze alle durch .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.5
Potenziere mit .
Schritt 2.6
Potenziere mit .
Schritt 2.7
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.8
Addiere und .
Schritt 2.9
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.10
Mutltipliziere mit .
Schritt 3
Setze in die gegebene Differentialgleich ein.
Schritt 4
Ersetze durch .
Schritt 5
Schritt 5.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 5.1.1
Teile jeden Ausdruck in durch .
Schritt 5.1.2
Vereinfache die linke Seite.
Schritt 5.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.1.2
Forme den Ausdruck um.
Schritt 5.1.2.2
Kürze den gemeinsamen Faktor von .
Schritt 5.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.2.2
Dividiere durch .
Schritt 5.1.3
Vereinfache die rechte Seite.
Schritt 5.1.3.1
Kürze den gemeinsamen Faktor von .
Schritt 5.1.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.1.2
Forme den Ausdruck um.
Schritt 5.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 5.3
Vereinfache .
Schritt 5.3.1
Schreibe als um.
Schritt 5.3.2
Jede Wurzel von ist .
Schritt 5.3.3
Vereinfache den Nenner.
Schritt 5.3.3.1
Schreibe als um.
Schritt 5.3.3.2
Ziehe Terme aus der Wurzel heraus unter der Annahme positiver reeller Zahlen.
Schritt 5.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 5.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 5.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 5.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.