Analysis Beispiele
(5x3+21x2-16)÷(x+4)(5x3+21x2−16)÷(x+4)
Schritt 1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert 0.
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 |
Schritt 2
Dividiere den Term höchster Ordnung im Dividend 5x3 durch den Term höchster Ordnung im Divisor x.
5x2 | |||||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 |
Schritt 3
Multipliziere den neuen Bruchterm mit dem Teiler.
5x2 | |||||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
+ | 5x3 | + | 20x2 |
Schritt 4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in 5x3+20x2
5x2 | |||||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 |
Schritt 5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
5x2 | |||||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 |
Schritt 6
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
5x2 | |||||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x |
Schritt 7
Dividiere den Term höchster Ordnung im Dividend x2 durch den Term höchster Ordnung im Divisor x.
5x2 | + | x | |||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x |
Schritt 8
Multipliziere den neuen Bruchterm mit dem Teiler.
5x2 | + | x | |||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
+ | x2 | + | 4x |
Schritt 9
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in x2+4x
5x2 | + | x | |||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x |
Schritt 10
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
5x2 | + | x | |||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x |
Schritt 11
Ziehe die nächsten Terme vom ursprünglichen Dividenden nach unten in den aktuellen Dividenden.
5x2 | + | x | |||||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x | - | 16 |
Schritt 12
Dividiere den Term höchster Ordnung im Dividend -4x durch den Term höchster Ordnung im Divisor x.
5x2 | + | x | - | 4 | |||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x | - | 16 |
Schritt 13
Multipliziere den neuen Bruchterm mit dem Teiler.
5x2 | + | x | - | 4 | |||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x | - | 16 | ||||||||
- | 4x | - | 16 |
Schritt 14
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in -4x-16
5x2 | + | x | - | 4 | |||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x | - | 16 | ||||||||
+ | 4x | + | 16 |
Schritt 15
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
5x2 | + | x | - | 4 | |||||||
x | + | 4 | 5x3 | + | 21x2 | + | 0x | - | 16 | ||
- | 5x3 | - | 20x2 | ||||||||
+ | x2 | + | 0x | ||||||||
- | x2 | - | 4x | ||||||||
- | 4x | - | 16 | ||||||||
+ | 4x | + | 16 | ||||||||
0 |
Schritt 16
Da der Rest gleich 0 ist, ist der Quotient das endgültige Ergebnis.
5x2+x-4