Algebra Beispiele
S([abc])=[a-2b-c3a-b+2ca+b+2c]S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦
Schritt 1
Der Kern einer Transformation ist ein Vektor, der die Transformation gleich dem Nullvektor (dem Urbild der Transformation) macht.
[a-2b-c3a-b+2ca+b+2c]=0⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦=0
Schritt 2
Erzeuge aus der Vektorgleichung ein Gleichungssystem.
a-2b-c=0a−2b−c=0
3a-b+2c=03a−b+2c=0
a+b+2c=0a+b+2c=0
Schritt 3
Write the system as a matrix.
[1-2-103-1201120]⎡⎢
⎢⎣1−2−103−1201120⎤⎥
⎥⎦
Schritt 4
Schritt 4.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
Schritt 4.1.1
Perform the row operation R2=R2-3R1R2=R2−3R1 to make the entry at 2,12,1 a 00.
[1-2-103-3⋅1-1-3⋅-22-3⋅-10-3⋅01120]⎡⎢
⎢⎣1−2−103−3⋅1−1−3⋅−22−3⋅−10−3⋅01120⎤⎥
⎥⎦
Schritt 4.1.2
Vereinfache R2R2.
[1-2-1005501120]⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
[1-2-1005501120]⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
Schritt 4.2
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Schritt 4.2.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1-2-1005501-11+22+10-0]⎡⎢
⎢⎣1−2−1005501−11+22+10−0⎤⎥
⎥⎦
Schritt 4.2.2
Vereinfache R3R3.
[1-2-1005500330]⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
[1-2-1005500330]⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
Schritt 4.3
Multiply each element of R2R2 by 1515 to make the entry at 2,22,2 a 11.
Schritt 4.3.1
Multiply each element of R2R2 by 1515 to make the entry at 2,22,2 a 11.
[1-2-10055555050330]⎡⎢
⎢⎣1−2−10055555050330⎤⎥
⎥⎦
Schritt 4.3.2
Vereinfache R2R2.
[1-2-1001100330]⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
[1-2-1001100330]⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
Schritt 4.4
Perform the row operation R3=R3-3R2R3=R3−3R2 to make the entry at 3,23,2 a 00.
Schritt 4.4.1
Perform the row operation R3=R3-3R2R3=R3−3R2 to make the entry at 3,23,2 a 00.
[1-2-1001100-3⋅03-3⋅13-3⋅10-3⋅0]⎡⎢
⎢⎣1−2−1001100−3⋅03−3⋅13−3⋅10−3⋅0⎤⎥
⎥⎦
Schritt 4.4.2
Vereinfache R3R3.
[1-2-1001100000]⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
[1-2-1001100000]⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
Schritt 4.5
Perform the row operation R1=R1+2R2R1=R1+2R2 to make the entry at 1,21,2 a 00.
Schritt 4.5.1
Perform the row operation R1=R1+2R2R1=R1+2R2 to make the entry at 1,21,2 a 00.
[1+2⋅0-2+2⋅1-1+2⋅10+2⋅001100000]⎡⎢
⎢⎣1+2⋅0−2+2⋅1−1+2⋅10+2⋅001100000⎤⎥
⎥⎦
Schritt 4.5.2
Vereinfache R1R1.
[101001100000]⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
[101001100000]⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
[101001100000]⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
Schritt 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0a+c=0
b+c=0b+c=0
0=00=0
Schritt 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[-c-cc]⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣−c−cc⎤⎥⎦
Schritt 7
Write the solution as a linear combination of vectors.
[abc]=c[-1-11]⎡⎢⎣abc⎤⎥⎦=c⎡⎢⎣−1−11⎤⎥⎦
Schritt 8
Write as a solution set.
{c[-1-11]|c∈R}⎧⎪⎨⎪⎩c⎡⎢⎣−1−11⎤⎥⎦∣∣
∣∣c∈R⎫⎪⎬⎪⎭
Schritt 9
The solution is the set of vectors created from the free variables of the system.
{[-1-11]}⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭
Schritt 10
Der Nullraum von SS ist der Teilraum {[-1-11]}⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭.
K(S)={[-1-11]}K(S)=⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭