إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2
خطوة 2.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 4
خطوة 4.1
خُذ ظل التمام العكسي لكلا المتعادلين لاستخراج من داخل ظل التمام.
خطوة 4.2
بسّط الطرف الأيمن.
خطوة 4.2.1
القيمة الدقيقة لـ هي .
خطوة 4.3
دالة ظل التمام موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 4.4
بسّط .
خطوة 4.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.4.2
اجمع الكسور.
خطوة 4.4.2.1
اجمع و.
خطوة 4.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 4.4.3
بسّط بَسْط الكسر.
خطوة 4.4.3.1
انقُل إلى يسار .
خطوة 4.4.3.2
أضف و.
خطوة 4.5
أوجِد فترة .
خطوة 4.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.5.4
اقسِم على .
خطوة 4.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5
خطوة 5.1
خُذ ظل التمام العكسي لكلا المتعادلين لاستخراج من داخل ظل التمام.
خطوة 5.2
بسّط الطرف الأيمن.
خطوة 5.2.1
القيمة الدقيقة لـ هي .
خطوة 5.3
دالة ظل التمام سالبة في الربعين الثاني والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 5.4
بسّط العبارة لإيجاد الحل الثاني.
خطوة 5.4.1
أضف إلى .
خطوة 5.4.2
الزاوية الناتجة لـ موجبة ومشتركة النهاية مع .
خطوة 5.5
أوجِد فترة .
خطوة 5.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.5.4
اقسِم على .
خطوة 5.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 7
خطوة 7.1
ادمج و في .
، لأي عدد صحيح
خطوة 7.2
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح