حساب المثلثات الأمثلة

أوجد القيمة العظمى/الصغرى y=4cos((3theta)/2)
خطوة 1
أوجِد المشتق الأول للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 1.2.2
مشتق بالنسبة إلى يساوي .
خطوة 1.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اضرب في .
خطوة 1.3.2
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 1.3.3
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
اجمع و.
خطوة 1.3.3.2
اضرب في .
خطوة 1.3.3.3
اجمع و.
خطوة 1.3.3.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.4.1
أخرِج العامل من .
خطوة 1.3.3.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.4.2.1
أخرِج العامل من .
خطوة 1.3.3.4.2.2
ألغِ العامل المشترك.
خطوة 1.3.3.4.2.3
أعِد كتابة العبارة.
خطوة 1.3.3.4.2.4
اقسِم على .
خطوة 1.3.4
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 1.3.5
اضرب في .
خطوة 2
أوجِد المشتق الثاني للدالة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.2
أوجِد المشتقة باستخدام قاعدة السلسلة، والتي تنص على أن هو حيث و.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لتطبيق قاعدة السلسلة، عيّن قيمة لتصبح .
خطوة 2.2.2
مشتق بالنسبة إلى يساوي .
خطوة 2.2.3
استبدِل كافة حالات حدوث بـ .
خطوة 2.3
أوجِد المشتقة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
بما أن عدد ثابت بالنسبة إلى ، إذن مشتق بالنسبة إلى يساوي .
خطوة 2.3.2
بسّط الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
اجمع و.
خطوة 2.3.2.2
اضرب في .
خطوة 2.3.2.3
اجمع و.
خطوة 2.3.2.4
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.4.1
أخرِج العامل من .
خطوة 2.3.2.4.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.4.2.1
أخرِج العامل من .
خطوة 2.3.2.4.2.2
ألغِ العامل المشترك.
خطوة 2.3.2.4.2.3
أعِد كتابة العبارة.
خطوة 2.3.2.4.2.4
اقسِم على .
خطوة 2.3.3
أوجِد المشتقة باستخدام قاعدة القوة التي تنص على أن هو حيث .
خطوة 2.3.4
اضرب في .
خطوة 3
لإيجاد قيم الحد الأقصى المحلي والحد الأدنى المحلي للدالة، عيّن قيمة المشتق لتصبح مساوية لـ وأوجِد الحل.
خطوة 4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم على .
خطوة 5
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
القيمة الدقيقة لـ هي .
خطوة 7
عيّن قيمة بسط الكسر بحيث تصبح مساوية لصفر.
خطوة 8
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اقسِم كل حد في على .
خطوة 8.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1.1
ألغِ العامل المشترك.
خطوة 8.2.1.2
اقسِم على .
خطوة 8.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
اقسِم على .
خطوة 9
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 10
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 10.1
اضرب كلا المتعادلين في .
خطوة 10.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1.1.1.1
ألغِ العامل المشترك.
خطوة 10.2.1.1.1.2
أعِد كتابة العبارة.
خطوة 10.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.1.1.2.1
أخرِج العامل من .
خطوة 10.2.1.1.2.2
ألغِ العامل المشترك.
خطوة 10.2.1.1.2.3
أعِد كتابة العبارة.
خطوة 10.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 10.2.2.1.1
اطرح من .
خطوة 10.2.2.1.2
اجمع و.
خطوة 11
حل المعادلة .
خطوة 12
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 13
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 13.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.1
أخرِج العامل من .
خطوة 13.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 13.1.2.1
أخرِج العامل من .
خطوة 13.1.2.2
ألغِ العامل المشترك.
خطوة 13.1.2.3
أعِد كتابة العبارة.
خطوة 13.1.2.4
اقسِم على .
خطوة 13.2
اضرب في .
خطوة 13.3
القيمة الدقيقة لـ هي .
خطوة 13.4
اضرب في .
خطوة 14
هي حد أقصى محلي لأن قيمة المشتقة الثانية سالبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أقصى محلي
خطوة 15
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 15.1
استبدِل المتغير بـ في العبارة.
خطوة 15.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.1
أخرِج العامل من .
خطوة 15.2.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.2.1
أخرِج العامل من .
خطوة 15.2.1.2.2
ألغِ العامل المشترك.
خطوة 15.2.1.2.3
أعِد كتابة العبارة.
خطوة 15.2.1.2.4
اقسِم على .
خطوة 15.2.2
اضرب في .
خطوة 15.2.3
القيمة الدقيقة لـ هي .
خطوة 15.2.4
اضرب في .
خطوة 15.2.5
الإجابة النهائية هي .
خطوة 16
احسِب قيمة المشتق الثاني في . إذا كان المشتق الثاني موجبًا، فإنه إذن الحد الأدنى المحلي. أما إذا كان سالبًا، فإنه إذن الحد الأقصى المحلي.
خطوة 17
احسِب قيمة المشتق الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 17.1
اجمع و.
خطوة 17.2
اضرب في .
خطوة 17.3
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 17.3.1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 17.3.1.1
أخرِج العامل من .
خطوة 17.3.1.2
أخرِج العامل من .
خطوة 17.3.1.3
ألغِ العامل المشترك.
خطوة 17.3.1.4
أعِد كتابة العبارة.
خطوة 17.3.2
اقسِم على .
خطوة 17.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 17.4.1
ألغِ العامل المشترك.
خطوة 17.4.2
اقسِم على .
خطوة 17.5
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 17.6
القيمة الدقيقة لـ هي .
خطوة 17.7
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 17.7.1
اضرب في .
خطوة 17.7.2
اضرب في .
خطوة 18
هي حد أدنى محلي لأن قيمة المشتقة الثانية موجبة. يُشار إلى ذلك باسم اختبار المشتقة الثانية.
هي حد أدنى محلي
خطوة 19
أوجِد قيمة "ص" عندما تكون .
انقر لعرض المزيد من الخطوات...
خطوة 19.1
استبدِل المتغير بـ في العبارة.
خطوة 19.2
بسّط النتيجة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1
اجمع و.
خطوة 19.2.2
اضرب في .
خطوة 19.2.3
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.3.1
اختزِل العبارة بحذف العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.3.1.1
أخرِج العامل من .
خطوة 19.2.3.1.2
أخرِج العامل من .
خطوة 19.2.3.1.3
ألغِ العامل المشترك.
خطوة 19.2.3.1.4
أعِد كتابة العبارة.
خطوة 19.2.3.2
اقسِم على .
خطوة 19.2.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 19.2.4.1
ألغِ العامل المشترك.
خطوة 19.2.4.2
اقسِم على .
خطوة 19.2.5
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 19.2.6
القيمة الدقيقة لـ هي .
خطوة 19.2.7
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 19.2.7.1
اضرب في .
خطوة 19.2.7.2
اضرب في .
خطوة 19.2.8
الإجابة النهائية هي .
خطوة 20
هذه هي القيم القصوى المحلية لـ .
هي نقطة قصوى محلية
هي نقاط دنيا محلية
خطوة 21