إدخال مسألة...
حساب المثلثات الأمثلة
,
خطوة 1
دالة الجيب سالبة في الربعين الثالث والرابع. دالة ظل التمام موجبة في الربعين الأول والثالث. مجموعة الحلول لـ تنحصر في الربع الثالث بما أنه الربع الوحيد الموجود في كلتا المجموعتين.
الحل في الربع الثالث.
خطوة 2
استخدِم تعريف ظل التمام لإيجاد أطوال الأضلاع المعروفة للمثلث قائم الزاوية في دائرة الوحدة. يحدد الربع علامة كل قيمة من القيم.
خطوة 3
أوجِد وتر مثلث دائرة الوحدة. ونظرًا إلى أن الضلعين المجاور والمقابل معروفان، استخدم نظرية فيثاغورس لإيجاد الضلع المتبقي.
خطوة 4
استبدِل القيم المعروفة في المعادلة.
خطوة 5
خطوة 5.1
ارفع إلى القوة .
الوتر
خطوة 5.2
ارفع إلى القوة .
الوتر
خطوة 5.3
أضف و.
الوتر
خطوة 5.4
أعِد كتابة بالصيغة .
الوتر
خطوة 5.5
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
الوتر
الوتر
خطوة 6
خطوة 6.1
استخدِم تعريف الجيب لإيجاد قيمة .
خطوة 6.2
عوّض بالقيم المعروفة.
خطوة 6.3
انقُل السالب أمام الكسر.
خطوة 7
خطوة 7.1
استخدِم تعريف جيب التمام لإيجاد قيمة .
خطوة 7.2
عوّض بالقيم المعروفة.
خطوة 7.3
انقُل السالب أمام الكسر.
خطوة 8
خطوة 8.1
استخدِم تعريف الظل لإيجاد قيمة .
خطوة 8.2
عوّض بالقيم المعروفة.
خطوة 8.3
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 9
خطوة 9.1
استخدِم تعريف القاطع لإيجاد قيمة .
خطوة 9.2
عوّض بالقيم المعروفة.
خطوة 9.3
انقُل السالب أمام الكسر.
خطوة 10
خطوة 10.1
استخدِم تعريف قاطع التمام لإيجاد قيمة .
خطوة 10.2
عوّض بالقيم المعروفة.
خطوة 10.3
انقُل السالب أمام الكسر.
خطوة 11
هذا هو الحل لكل قيمة من القيم المثلثية.