إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
طبّق خاصية التوزيع.
خطوة 2.2
اضرب في .
خطوة 2.3
اضرب في .
خطوة 3
استبدِل بـ .
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي .
خطوة 4.2
بسّط .
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
طبّق خاصية التوزيع.
خطوة 4.2.1.2
اضرب في .
خطوة 4.2.1.3
اضرب .
خطوة 4.2.1.3.1
اضرب في .
خطوة 4.2.1.3.2
اضرب في .
خطوة 4.2.2
اطرح من .
خطوة 4.3
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 4.3.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 4.3.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 4.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أضف إلى كلا المتعادلين.
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
أضف إلى كلا المتعادلين.
خطوة 4.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4.8
عوّض بقيمة التي تساوي .
خطوة 4.9
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 4.10
أوجِد قيمة في .
خطوة 4.10.1
مدى جيب التمام هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 4.11
أوجِد قيمة في .
خطوة 4.11.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 4.11.2
بسّط الطرف الأيمن.
خطوة 4.11.2.1
القيمة الدقيقة لـ هي .
خطوة 4.11.3
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 4.11.4
اطرح من .
خطوة 4.11.5
أوجِد فترة .
خطوة 4.11.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.11.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.11.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.11.5.4
اقسِم على .
خطوة 4.11.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4.12
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 4.13
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح