إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.2
حلّل إلى عوامل بالتجميع.
خطوة 1.2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 1.2.1.1
أخرِج العامل من .
خطوة 1.2.1.2
أعِد كتابة في صورة زائد
خطوة 1.2.1.3
طبّق خاصية التوزيع.
خطوة 1.2.1.4
اضرب في .
خطوة 1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2.2.1
جمّع أول حدين وآخر حدين.
خطوة 1.2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 1.2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 1.3
استبدِل كافة حالات حدوث بـ .
خطوة 2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.2.2.1
اقسِم كل حد في على .
خطوة 3.2.2.2
بسّط الطرف الأيسر.
خطوة 3.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.2.1.2
اقسِم على .
خطوة 3.2.2.3
بسّط الطرف الأيمن.
خطوة 3.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.2.3
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
خطوة 3.2.4
بسّط الطرف الأيمن.
خطوة 3.2.4.1
احسِب قيمة .
خطوة 3.2.5
دالة المماس سالبة في الربعين الثاني والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 3.2.6
بسّط العبارة لإيجاد الحل الثاني.
خطوة 3.2.6.1
أضف إلى .
خطوة 3.2.6.2
الزاوية الناتجة لـ موجبة ومشتركة النهاية مع .
خطوة 3.2.7
أوجِد فترة .
خطوة 3.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.7.4
اقسِم على .
خطوة 3.2.8
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 3.2.8.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 3.2.8.2
استبدِل بتقريب الكسور العشرية.
خطوة 3.2.8.3
اطرح من .
خطوة 3.2.8.4
اسرِد الزوايا الجديدة.
خطوة 3.2.9
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
خُذ المماس العكسي لكلا المتعادلين لاستخراج من داخل المماس.
خطوة 4.2.3
بسّط الطرف الأيمن.
خطوة 4.2.3.1
القيمة الدقيقة لـ هي .
خطوة 4.2.4
دالة المماس موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 4.2.5
بسّط .
خطوة 4.2.5.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.5.2
اجمع الكسور.
خطوة 4.2.5.2.1
اجمع و.
خطوة 4.2.5.2.2
اجمع البسوط على القاسم المشترك.
خطوة 4.2.5.3
بسّط بَسْط الكسر.
خطوة 4.2.5.3.1
انقُل إلى يسار .
خطوة 4.2.5.3.2
أضف و.
خطوة 4.2.6
أوجِد فترة .
خطوة 4.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.6.4
اقسِم على .
خطوة 4.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 6
خطوة 6.1
ادمج و في .
، لأي عدد صحيح
خطوة 6.2
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح