حساب المثلثات الأمثلة

حل المثلث A=50 , c=7 , a=4
, ,
خطوة 1
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 2
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 3
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كلا المتعادلين في .
خطوة 3.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1.1
احسِب قيمة .
خطوة 3.2.2.1.2
اقسِم على .
خطوة 3.2.2.1.3
اضرب في .
خطوة 3.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 4
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول
خطوة 5
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 6
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 7
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اضرب كلا المتعادلين في .
خطوة 7.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1.1.1
ألغِ العامل المشترك.
خطوة 7.2.1.1.2
أعِد كتابة العبارة.
خطوة 7.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 7.2.2.1.1
احسِب قيمة .
خطوة 7.2.2.1.2
اقسِم على .
خطوة 7.2.2.1.3
اضرب في .
خطوة 7.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 8
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول
خطوة 9
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 10
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 11
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 11.1
اضرب كلا المتعادلين في .
خطوة 11.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.1.1.1
ألغِ العامل المشترك.
خطوة 11.2.1.1.2
أعِد كتابة العبارة.
خطوة 11.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 11.2.2.1.1
احسِب قيمة .
خطوة 11.2.2.1.2
اقسِم على .
خطوة 11.2.2.1.3
اضرب في .
خطوة 11.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 12
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول
خطوة 13
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 14
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 15
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 15.1
اضرب كلا المتعادلين في .
خطوة 15.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 15.2.1.1.1
ألغِ العامل المشترك.
خطوة 15.2.1.1.2
أعِد كتابة العبارة.
خطوة 15.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 15.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 15.2.2.1.1
احسِب قيمة .
خطوة 15.2.2.1.2
اقسِم على .
خطوة 15.2.2.1.3
اضرب في .
خطوة 15.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 16
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول
خطوة 17
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 18
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 19
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 19.1
اضرب كلا المتعادلين في .
خطوة 19.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 19.2.1.1.1
ألغِ العامل المشترك.
خطوة 19.2.1.1.2
أعِد كتابة العبارة.
خطوة 19.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 19.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 19.2.2.1.1
احسِب قيمة .
خطوة 19.2.2.1.2
اقسِم على .
خطوة 19.2.2.1.3
اضرب في .
خطوة 19.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 20
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول
خطوة 21
يستند قانون الجيب إلى تناسب الزوايا مع الأضلاع المقابلة لها في المثلثات. ينص القانون على أنه بالنسبة إلى زوايا المثلث غير القائم، فإن كل زاوية في المثلث لها نفس نسبة قياس الزاوية إلى قيمة جيب الزاوية.
خطوة 22
عوّض بالقيم المعروفة في قانون الجيب لإيجاد .
خطوة 23
أوجِد قيمة في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 23.1
اضرب كلا المتعادلين في .
خطوة 23.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 23.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 23.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 23.2.1.1.1
ألغِ العامل المشترك.
خطوة 23.2.1.1.2
أعِد كتابة العبارة.
خطوة 23.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 23.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 23.2.2.1.1
احسِب قيمة .
خطوة 23.2.2.1.2
اقسِم على .
خطوة 23.2.2.1.3
اضرب في .
خطوة 23.3
مدى الجيب هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
خطوة 24
لا توجد معلمات كافية لحل المثلث.
مثلث مجهول