إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
استخدِم الصيغة لإيجاد المتغيرات المُستخدمة لإيجاد السعة والفترة وإزاحة الطور والتحريك العمودي.
خطوة 2
أوجِد السعة .
السعة:
خطوة 3
خطوة 3.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.4
اقسِم على .
خطوة 4
خطوة 4.1
يمكن حساب إزاحة الطور للدالة من .
إزاحة الطور:
خطوة 4.2
استبدِل قيم و في المعادلة لإزاحة الطور.
إزاحة الطور:
خطوة 4.3
اقسِم على .
إزاحة الطور:
إزاحة الطور:
خطوة 5
اسرِد خصائص الدالة المثلثية.
السعة:
الفترة:
إزاحة الطور: ( إلى اليمين)
الإزاحة الرأسية: لا توجد
خطوة 6
خطوة 6.1
أوجِد النقطة في .
خطوة 6.1.1
استبدِل المتغير بـ في العبارة.
خطوة 6.1.2
بسّط النتيجة.
خطوة 6.1.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.1.2.2
اطرح من .
خطوة 6.1.2.3
اقسِم على .
خطوة 6.1.2.4
القيمة الدقيقة لـ هي .
خطوة 6.1.2.5
الإجابة النهائية هي .
خطوة 6.2
أوجِد النقطة في .
خطوة 6.2.1
استبدِل المتغير بـ في العبارة.
خطوة 6.2.2
بسّط النتيجة.
خطوة 6.2.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.2.2.2
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 6.2.2.2.1
اضرب في .
خطوة 6.2.2.2.2
اضرب في .
خطوة 6.2.2.3
اجمع البسوط على القاسم المشترك.
خطوة 6.2.2.4
بسّط بَسْط الكسر.
خطوة 6.2.2.4.1
اضرب في .
خطوة 6.2.2.4.2
اطرح من .
خطوة 6.2.2.5
احذِف العامل المشترك لـ و.
خطوة 6.2.2.5.1
أخرِج العامل من .
خطوة 6.2.2.5.2
ألغِ العوامل المشتركة.
خطوة 6.2.2.5.2.1
أخرِج العامل من .
خطوة 6.2.2.5.2.2
ألغِ العامل المشترك.
خطوة 6.2.2.5.2.3
أعِد كتابة العبارة.
خطوة 6.2.2.6
القيمة الدقيقة لـ هي .
خطوة 6.2.2.7
الإجابة النهائية هي .
خطوة 6.3
أوجِد النقطة في .
خطوة 6.3.1
استبدِل المتغير بـ في العبارة.
خطوة 6.3.2
بسّط النتيجة.
خطوة 6.3.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.3.2.2
اطرح من .
خطوة 6.3.2.3
ألغِ العامل المشترك لـ .
خطوة 6.3.2.3.1
ألغِ العامل المشترك.
خطوة 6.3.2.3.2
اقسِم على .
خطوة 6.3.2.4
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول. اجعل العبارة سالبة لأن جيب التمام سالب في الربع الثاني.
خطوة 6.3.2.5
القيمة الدقيقة لـ هي .
خطوة 6.3.2.6
اضرب في .
خطوة 6.3.2.7
الإجابة النهائية هي .
خطوة 6.4
أوجِد النقطة في .
خطوة 6.4.1
استبدِل المتغير بـ في العبارة.
خطوة 6.4.2
بسّط النتيجة.
خطوة 6.4.2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.4.2.2
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 6.4.2.2.1
اضرب في .
خطوة 6.4.2.2.2
اضرب في .
خطوة 6.4.2.3
اجمع البسوط على القاسم المشترك.
خطوة 6.4.2.4
بسّط بَسْط الكسر.
خطوة 6.4.2.4.1
اضرب في .
خطوة 6.4.2.4.2
اطرح من .
خطوة 6.4.2.5
احذِف العامل المشترك لـ و.
خطوة 6.4.2.5.1
أخرِج العامل من .
خطوة 6.4.2.5.2
ألغِ العوامل المشتركة.
خطوة 6.4.2.5.2.1
أخرِج العامل من .
خطوة 6.4.2.5.2.2
ألغِ العامل المشترك.
خطوة 6.4.2.5.2.3
أعِد كتابة العبارة.
خطوة 6.4.2.6
طبّق زاوية المرجع بإيجاد الزاوية ذات القيم المثلثية المكافئة في الربع الأول.
خطوة 6.4.2.7
القيمة الدقيقة لـ هي .
خطوة 6.4.2.8
الإجابة النهائية هي .
خطوة 6.5
أوجِد النقطة في .
خطوة 6.5.1
استبدِل المتغير بـ في العبارة.
خطوة 6.5.2
بسّط النتيجة.
خطوة 6.5.2.1
اجمع البسوط على القاسم المشترك.
خطوة 6.5.2.2
اطرح من .
خطوة 6.5.2.3
احذِف العامل المشترك لـ و.
خطوة 6.5.2.3.1
أخرِج العامل من .
خطوة 6.5.2.3.2
ألغِ العوامل المشتركة.
خطوة 6.5.2.3.2.1
أخرِج العامل من .
خطوة 6.5.2.3.2.2
ألغِ العامل المشترك.
خطوة 6.5.2.3.2.3
أعِد كتابة العبارة.
خطوة 6.5.2.3.2.4
اقسِم على .
خطوة 6.5.2.4
اطرح الدورات الكاملة البالغة حتى تصبح الزاوية أكبر من أو تساوي وأصغر من .
خطوة 6.5.2.5
القيمة الدقيقة لـ هي .
خطوة 6.5.2.6
الإجابة النهائية هي .
خطوة 6.6
اسرِد النقاط في جدول.
خطوة 7
يمكن تمثيل الدالة المثلثية بيانيًا باستخدام السعة والفترة وإزاحة الطور والتحريك العمودي والنقاط.
السعة:
الفترة:
إزاحة الطور: ( إلى اليمين)
الإزاحة الرأسية: لا توجد
خطوة 8