حساب المثلثات الأمثلة

Resolver para x sin(x)cos(x)tan(x)=sin(0)^2
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أعِد كتابة من حيث الجيوب وجيوب التمام.
خطوة 2.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أخرِج العامل من .
خطوة 2.1.2.2
ألغِ العامل المشترك.
خطوة 2.1.2.3
أعِد كتابة العبارة.
خطوة 2.1.3
ارفع إلى القوة .
خطوة 2.1.4
ارفع إلى القوة .
خطوة 2.1.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.1.6
أضف و.
خطوة 2.1.7
القيمة الدقيقة لـ هي .
خطوة 2.1.8
ينتج عن رفع إلى أي قوة موجبة.
خطوة 2.1.9
اضرب في .
خطوة 2.2
أضف و.
خطوة 3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 3.2
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أعِد كتابة بالصيغة .
خطوة 3.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 3.2.3
زائد أو ناقص يساوي .
خطوة 3.3
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 3.4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.4.1
القيمة الدقيقة لـ هي .
خطوة 3.5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 3.6
اطرح من .
خطوة 3.7
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 3.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.7.4
اقسِم على .
خطوة 3.8
فترة دالة هي ، لذا تتكرر القيم كل من الدرجات في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
وحّد الإجابات.
، لأي عدد صحيح