إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
اقسِم كل حد في على .
خطوة 1.2
بسّط الطرف الأيسر.
خطوة 1.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.1.2
اقسِم على .
خطوة 1.3
بسّط الطرف الأيمن.
خطوة 1.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 1.3.2
اضرب .
خطوة 1.3.2.1
اضرب في .
خطوة 1.3.2.2
اضرب في .
خطوة 2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3
خطوة 3.1
أعِد كتابة بالصيغة .
خطوة 3.2
أعِد كتابة بالصيغة .
خطوة 3.3
بسّط القاسم.
خطوة 3.3.1
أعِد كتابة بالصيغة .
خطوة 3.3.1.1
أخرِج العامل من .
خطوة 3.3.1.2
أعِد كتابة بالصيغة .
خطوة 3.3.2
أخرِج الحدود من تحت الجذر.
خطوة 3.4
اضرب في .
خطوة 3.5
جمّع وبسّط القاسم.
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
انقُل .
خطوة 3.5.3
ارفع إلى القوة .
خطوة 3.5.4
ارفع إلى القوة .
خطوة 3.5.5
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.5.6
أضف و.
خطوة 3.5.7
أعِد كتابة بالصيغة .
خطوة 3.5.7.1
استخدِم لكتابة في صورة .
خطوة 3.5.7.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 3.5.7.3
اجمع و.
خطوة 3.5.7.4
ألغِ العامل المشترك لـ .
خطوة 3.5.7.4.1
ألغِ العامل المشترك.
خطوة 3.5.7.4.2
أعِد كتابة العبارة.
خطوة 3.5.7.5
احسِب قيمة الأُس.
خطوة 3.6
بسّط بَسْط الكسر.
خطوة 3.6.1
أعِد كتابة العبارة باستخدام الدليل المشترك الأصغر لـ .
خطوة 3.6.1.1
استخدِم لكتابة في صورة .
خطوة 3.6.1.2
أعِد كتابة بالصيغة .
خطوة 3.6.1.3
أعِد كتابة بالصيغة .
خطوة 3.6.2
اجمع باستخدام قاعدة ضرب الجذور.
خطوة 3.6.3
اضرب في بجمع الأُسس.
خطوة 3.6.3.1
اضرب في .
خطوة 3.6.3.1.1
ارفع إلى القوة .
خطوة 3.6.3.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.6.3.2
أضف و.
خطوة 3.7
بسّط العبارة.
خطوة 3.7.1
اضرب في .
خطوة 3.7.2
ارفع إلى القوة .
خطوة 4
خطوة 4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 6
خطوة 6.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 6.2
بسّط الطرف الأيمن.
خطوة 6.2.1
احسِب قيمة .
خطوة 6.3
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6.4
أوجِد قيمة .
خطوة 6.4.1
احذِف الأقواس.
خطوة 6.4.2
احذِف الأقواس.
خطوة 6.4.3
اطرح من .
خطوة 6.5
أوجِد فترة .
خطوة 6.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.5.4
اقسِم على .
خطوة 6.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
خطوة 7.1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 7.2
بسّط الطرف الأيمن.
خطوة 7.2.1
احسِب قيمة .
خطوة 7.3
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 7.4
بسّط العبارة لإيجاد الحل الثاني.
خطوة 7.4.1
اطرح من .
خطوة 7.4.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 7.5
أوجِد فترة .
خطوة 7.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.5.4
اقسِم على .
خطوة 7.6
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
خطوة 7.6.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 7.6.2
اطرح من .
خطوة 7.6.3
اسرِد الزوايا الجديدة.
خطوة 7.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 8
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 9
خطوة 9.1
ادمج و في .
، لأي عدد صحيح
خطوة 9.2
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح