إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
بادِل المتغيرات.
خطوة 2
خطوة 2.1
أعِد كتابة المعادلة في صورة .
خطوة 2.2
أعِد كتابة بالصيغة الأُسية باستخدام تعريف اللوغاريتم. إذا كان و عددين حقيقيين موجبين وكان ، إذن تكافئ .
خطوة 2.3
أوجِد قيمة .
خطوة 2.3.1
أعِد كتابة المعادلة في صورة .
خطوة 2.3.2
أضف إلى كلا المتعادلين.
خطوة 2.3.3
اقسِم كل حد في على وبسّط.
خطوة 2.3.3.1
اقسِم كل حد في على .
خطوة 2.3.3.2
بسّط الطرف الأيسر.
خطوة 2.3.3.2.1
ألغِ العامل المشترك لـ .
خطوة 2.3.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.3.2.1.2
اقسِم على .
خطوة 2.3.3.3
بسّط الطرف الأيمن.
خطوة 2.3.3.3.1
احذِف العامل المشترك لـ و.
خطوة 2.3.3.3.1.1
أخرِج العامل من .
خطوة 2.3.3.3.1.2
ألغِ العوامل المشتركة.
خطوة 2.3.3.3.1.2.1
أخرِج العامل من .
خطوة 2.3.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 2.3.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 2.3.3.3.1.2.4
اقسِم على .
خطوة 2.3.3.3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3.3.3.3
اجمع و.
خطوة 2.3.3.3.4
اجمع البسوط على القاسم المشترك.
خطوة 2.3.3.3.5
اضرب في بجمع الأُسس.
خطوة 2.3.3.3.5.1
اضرب في .
خطوة 2.3.3.3.5.1.1
ارفع إلى القوة .
خطوة 2.3.3.3.5.1.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 2.3.3.3.5.2
جمّع الحدود المتعاكسة في .
خطوة 2.3.3.3.5.2.1
أضف و.
خطوة 2.3.3.3.5.2.2
أضف و.
خطوة 3
استبدِل بـ لعرض الإجابة النهائية.
خطوة 4
خطوة 4.1
للتحقق من صحة المعكوس، تحقق مما إذا كانتا و.
خطوة 4.2
احسِب قيمة .
خطوة 4.2.1
عيّن دالة النتيجة المركّبة.
خطوة 4.2.2
احسِب قيمة باستبدال قيمة في .
خطوة 4.2.3
بسّط بَسْط الكسر.
خطوة 4.2.3.1
الأُس واللوغاريتم دالتان عكسيتان.
خطوة 4.2.3.2
أضف و.
خطوة 4.2.3.3
أضف و.
خطوة 4.2.4
ألغِ العامل المشترك لـ .
خطوة 4.2.4.1
ألغِ العامل المشترك.
خطوة 4.2.4.2
اقسِم على .
خطوة 4.3
احسِب قيمة .
خطوة 4.3.1
عيّن دالة النتيجة المركّبة.
خطوة 4.3.2
احسِب قيمة باستبدال قيمة في .
خطوة 4.3.3
ألغِ العامل المشترك لـ .
خطوة 4.3.3.1
ألغِ العامل المشترك.
خطوة 4.3.3.2
أعِد كتابة العبارة.
خطوة 4.3.4
جمّع الحدود المتعاكسة في .
خطوة 4.3.4.1
اطرح من .
خطوة 4.3.4.2
أضف و.
خطوة 4.3.5
استخدِم قواعد اللوغاريتم لنقل خارج الأُس.
خطوة 4.3.6
أساس اللوغاريتم لـ هو .
خطوة 4.3.7
اضرب في .
خطوة 4.4
بما أن و، إذن هي معكوس .