حساب المثلثات الأمثلة

Resolver para x (sin(x)+0.2)(cos(2x)-1)=0
خطوة 1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
اطرح من كلا المتعادلين.
خطوة 2.2.2
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
احسِب قيمة .
خطوة 2.2.4
دالة الجيب سالبة في الربعين الثالث والرابع. لإيجاد الحل الثاني، اطرح الحل من ، لإيجاد زاوية المرجع. وبعد ذلك، اجمع زاوية المرجع المذكورة مع لإيجاد الحل في الربع الثالث.
خطوة 2.2.5
بسّط العبارة لإيجاد الحل الثاني.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.1
اطرح من .
خطوة 2.2.5.2
الزاوية الناتجة لـ موجبة وأصغر من ومشتركة النهاية مع .
خطوة 2.2.6
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.2.6.4
اقسِم على .
خطوة 2.2.7
اجمع مع كل زاوية سالبة لإيجاد الزوايا الموجبة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.7.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 2.2.7.2
اطرح من .
خطوة 2.2.7.3
اسرِد الزوايا الجديدة.
خطوة 2.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
أضف إلى كلا المتعادلين.
خطوة 3.2.2
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 3.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.3.1
القيمة الدقيقة لـ هي .
خطوة 3.2.4
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
اقسِم كل حد في على .
خطوة 3.2.4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.4.2.1.2
اقسِم على .
خطوة 3.2.4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.3.1
اقسِم على .
خطوة 3.2.5
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 3.2.6
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.1.1
اضرب في .
خطوة 3.2.6.1.2
أضف و.
خطوة 3.2.6.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.1
اقسِم كل حد في على .
خطوة 3.2.6.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.6.2.2.1.2
اقسِم على .
خطوة 3.2.6.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.3.1.1
ألغِ العامل المشترك.
خطوة 3.2.6.2.3.1.2
اقسِم على .
خطوة 3.2.7
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.7.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.7.4.1
ألغِ العامل المشترك.
خطوة 3.2.7.4.2
اقسِم على .
خطوة 3.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 5
ادمج و في .
، لأي عدد صحيح