إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
حلّل إلى عوامل باستخدام طريقة AC.
خطوة 1.1.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 1.1.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 1.2
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
خطوة 1.2.1
أعِد كتابة بالصيغة .
خطوة 1.2.2
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 1.2.3
أعِد كتابة متعدد الحدود.
خطوة 1.2.4
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.5
عوامل هي ، والتي تساوي حاصل ضرب في نفسها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.2
أعِد كتابة العبارة.
خطوة 3.2.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.2.2.1
طبّق خاصية التوزيع.
خطوة 3.2.2.2
طبّق خاصية التوزيع.
خطوة 3.2.2.3
طبّق خاصية التوزيع.
خطوة 3.2.3
بسّط ووحّد الحدود المتشابهة.
خطوة 3.2.3.1
بسّط كل حد.
خطوة 3.2.3.1.1
اضرب في .
خطوة 3.2.3.1.2
انقُل إلى يسار .
خطوة 3.2.3.1.3
اضرب في .
خطوة 3.2.3.2
اطرح من .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1.1
أخرِج العامل من .
خطوة 3.3.1.1.2
ألغِ العامل المشترك.
خطوة 3.3.1.1.3
أعِد كتابة العبارة.
خطوة 3.3.1.2
طبّق خاصية التوزيع.
خطوة 3.3.1.3
اضرب في .
خطوة 3.3.1.4
ألغِ العامل المشترك لـ .
خطوة 3.3.1.4.1
أخرِج العامل من .
خطوة 3.3.1.4.2
ألغِ العامل المشترك.
خطوة 3.3.1.4.3
أعِد كتابة العبارة.
خطوة 3.3.1.5
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.3.1.5.1
طبّق خاصية التوزيع.
خطوة 3.3.1.5.2
طبّق خاصية التوزيع.
خطوة 3.3.1.5.3
طبّق خاصية التوزيع.
خطوة 3.3.1.6
بسّط ووحّد الحدود المتشابهة.
خطوة 3.3.1.6.1
بسّط كل حد.
خطوة 3.3.1.6.1.1
اضرب في .
خطوة 3.3.1.6.1.2
انقُل إلى يسار .
خطوة 3.3.1.6.1.3
اضرب في .
خطوة 3.3.1.6.2
اطرح من .
خطوة 3.3.2
بسّط بجمع الحدود.
خطوة 3.3.2.1
اطرح من .
خطوة 3.3.2.2
أضف و.
خطوة 4
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 4.1.1
أضف إلى كلا المتعادلين.
خطوة 4.1.2
اطرح من كلا المتعادلين.
خطوة 4.1.3
جمّع الحدود المتعاكسة في .
خطوة 4.1.3.1
اطرح من .
خطوة 4.1.3.2
أضف و.
خطوة 4.1.4
أضف و.
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
أضف و.
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
خطوة 4.3.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: