إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
اطرح من كلا المتعادلين.
خطوة 2
خطوة 2.1
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 2.2
اطرح من .
خطوة 3
خطوة 3.1
أعِد ترتيب الحدود.
خطوة 3.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.2.1
اضرب في .
خطوة 3.2.2
أعِد كتابة في صورة زائد
خطوة 3.2.3
طبّق خاصية التوزيع.
خطوة 3.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3.1
جمّع أول حدين وآخر حدين.
خطوة 3.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
أضف إلى كلا المتعادلين.
خطوة 5.2.2
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5.2.3
بسّط الطرف الأيمن.
خطوة 5.2.3.1
القيمة الدقيقة لـ هي .
خطوة 5.2.4
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5.2.5
اطرح من .
خطوة 5.2.6
أوجِد فترة .
خطوة 5.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.6.4
اقسِم على .
خطوة 5.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.2.1
اقسِم كل حد في على .
خطوة 6.2.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.2.1.2
اقسِم على .
خطوة 6.2.2.3
بسّط الطرف الأيمن.
خطوة 6.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 6.2.3
مدى جيب التمام هو . وبما أن لا تقع ضمن هذا المدى، إذن لا يوجد حل.
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 8
وحّد الإجابات.
، لأي عدد صحيح