إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
عوّض بـ في المعادلة. سيسهّل ذلك استخدام الصيغة التربيعية.
خطوة 2
خطوة 2.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أضف إلى كلا المتعادلين.
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
اطرح من كلا المتعادلين.
خطوة 6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 7
عوّض بالقيمة الحقيقية لـ مرة أخرى في المعادلة المحلولة.
خطوة 8
أوجِد قيمة في المعادلة الأولى.
خطوة 9
خطوة 9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 9.2
بسّط .
خطوة 9.2.1
أعِد كتابة بالصيغة .
خطوة 9.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 9.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 9.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 9.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 9.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 10
أوجِد قيمة في المعادلة الثانية.
خطوة 11
خطوة 11.1
احذِف الأقواس.
خطوة 11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 11.3
أعِد كتابة بالصيغة .
خطوة 11.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 11.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 11.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 11.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 12
حل هو .