إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خُذ ظل التمام العكسي لكلا المتعادلين لاستخراج من داخل ظل التمام.
خطوة 2
خطوة 2.1
القيمة الدقيقة لـ هي .
خطوة 3
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.3
اجمع و.
خطوة 3.4
اجمع البسوط على القاسم المشترك.
خطوة 3.5
بسّط بَسْط الكسر.
خطوة 3.5.1
اضرب في .
خطوة 3.5.2
اطرح من .
خطوة 3.6
انقُل السالب أمام الكسر.
خطوة 4
دالة ظل التمام موجبة في الربعين الأول والثالث. لإيجاد الحل الثاني، أضِف زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5
خطوة 5.1
بسّط .
خطوة 5.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.1.2
اجمع الكسور.
خطوة 5.1.2.1
اجمع و.
خطوة 5.1.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.1.3
بسّط بَسْط الكسر.
خطوة 5.1.3.1
انقُل إلى يسار .
خطوة 5.1.3.2
أضف و.
خطوة 5.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 5.2.1
اطرح من كلا المتعادلين.
خطوة 5.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.3
اجمع و.
خطوة 5.2.4
اجمع البسوط على القاسم المشترك.
خطوة 5.2.5
بسّط بَسْط الكسر.
خطوة 5.2.5.1
اضرب في .
خطوة 5.2.5.2
اطرح من .
خطوة 6
خطوة 6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.4
اقسِم على .
خطوة 7
خطوة 7.1
اجمع مع لإيجاد الزاوية الموجبة.
خطوة 7.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 7.3
اجمع الكسور.
خطوة 7.3.1
اجمع و.
خطوة 7.3.2
اجمع البسوط على القاسم المشترك.
خطوة 7.4
بسّط بَسْط الكسر.
خطوة 7.4.1
انقُل إلى يسار .
خطوة 7.4.2
اطرح من .
خطوة 7.5
اسرِد الزوايا الجديدة.
خطوة 8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
خطوة 9
وحّد الإجابات.
، لأي عدد صحيح