حساب المثلثات الأمثلة

أوجد الخطوط المقاربة y=3tan(x/4)
خطوة 1
لأي ، تظهر خطوط التقارب الرأسية عند ، حيث يمثل عددًا صحيحًا. استخدِم الفترة الأساسية لـ ، ، لإيجاد خطوط التقارب الرأسية لـ . وعيّن قيمة ما بين الأقواس لدالة المماس، ، لـ بحيث تصبح مساوية لـ لإيجاد موضع خط التقارب الرأسي لـ .
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اضرب كلا المتعادلين في .
خطوة 2.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.1.2
أعِد كتابة العبارة.
خطوة 2.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 2.2.2.1.1.2
أخرِج العامل من .
خطوة 2.2.2.1.1.3
ألغِ العامل المشترك.
خطوة 2.2.2.1.1.4
أعِد كتابة العبارة.
خطوة 2.2.2.1.2
اضرب في .
خطوة 3
عيّن قيمة ما في داخل الأقواس لدالة المماس بحيث تصبح مساوية لـ .
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اضرب كلا المتعادلين في .
خطوة 4.2
بسّط كلا المتعادلين.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.1.2
أعِد كتابة العبارة.
خطوة 4.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
أخرِج العامل من .
خطوة 4.2.2.1.2
ألغِ العامل المشترك.
خطوة 4.2.2.1.3
أعِد كتابة العبارة.
خطوة 5
ستظهر الفترة الأساسية لـ عند ، حيث تكون و خطوط تقارب رأسية.
خطوة 6
أوجِد الفترة لمعرفة مكان وجود خطوط التقارب الرأسية.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
تساوي تقريبًا وهو عدد موجب، لذا أزِل القيمة المطلقة
خطوة 6.2
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.3
انقُل إلى يسار .
خطوة 7
تظهر خطوط التقارب الرأسية لـ عند و وكل من ، حيث يكون عددًا صحيحًا.
خطوة 8
المماس له خطوط تقارب رأسية فقط.
لا توجد خطوط تقارب أفقية
لا توجد خطوط تقارب مائلة
خطوط التقارب الرأسية: حيث يمثل عددًا صحيحًا
خطوة 9