إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خُذ الجيب العكسي لكلا المتعادلين لاستخراج من داخل الجيب.
خطوة 2
خطوة 2.1
القيمة الدقيقة لـ هي .
خطوة 3
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
اجمع البسوط على القاسم المشترك.
خطوة 3.3
اطرح من .
خطوة 3.4
اقسِم على .
خطوة 4
خطوة 4.1
اقسِم كل حد في على .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1
ألغِ العامل المشترك.
خطوة 4.2.1.2
اقسِم على .
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
اقسِم على .
خطوة 5
دالة الجيب موجبة في الربعين الأول والثاني. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثاني.
خطوة 6
خطوة 6.1
بسّط .
خطوة 6.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 6.1.2
اجمع الكسور.
خطوة 6.1.2.1
اجمع و.
خطوة 6.1.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.1.3
بسّط بَسْط الكسر.
خطوة 6.1.3.1
انقُل إلى يسار .
خطوة 6.1.3.2
اطرح من .
خطوة 6.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 6.2.3
اطرح من .
خطوة 6.2.4
احذِف العامل المشترك لـ و.
خطوة 6.2.4.1
أخرِج العامل من .
خطوة 6.2.4.2
ألغِ العوامل المشتركة.
خطوة 6.2.4.2.1
أخرِج العامل من .
خطوة 6.2.4.2.2
ألغِ العامل المشترك.
خطوة 6.2.4.2.3
أعِد كتابة العبارة.
خطوة 6.3
اقسِم كل حد في على وبسّط.
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
خطوة 6.3.2.1
ألغِ العامل المشترك لـ .
خطوة 6.3.2.1.1
ألغِ العامل المشترك.
خطوة 6.3.2.1.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
خطوة 6.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 6.3.3.2
ألغِ العامل المشترك لـ .
خطوة 6.3.3.2.1
أخرِج العامل من .
خطوة 6.3.3.2.2
ألغِ العامل المشترك.
خطوة 6.3.3.2.3
أعِد كتابة العبارة.
خطوة 7
خطوة 7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.4
ألغِ العامل المشترك لـ .
خطوة 7.4.1
ألغِ العامل المشترك.
خطوة 7.4.2
اقسِم على .
خطوة 8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح