إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
بسّط كل حد.
خطوة 1.1.1
استخدِم متطابقة ضعف الزاوية لتحويل إلى .
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
بسّط كل حد.
خطوة 1.1.3.1
استخدِم المتطابقة ثلاثية الزوايا لتحويل إلى .
خطوة 1.1.3.2
أعِد كتابة بالصيغة .
خطوة 1.1.3.3
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 1.1.3.3.1
طبّق خاصية التوزيع.
خطوة 1.1.3.3.2
طبّق خاصية التوزيع.
خطوة 1.1.3.3.3
طبّق خاصية التوزيع.
خطوة 1.1.3.4
بسّط ووحّد الحدود المتشابهة.
خطوة 1.1.3.4.1
بسّط كل حد.
خطوة 1.1.3.4.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 1.1.3.4.1.2
اضرب في بجمع الأُسس.
خطوة 1.1.3.4.1.2.1
انقُل .
خطوة 1.1.3.4.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.4.1.2.3
أضف و.
خطوة 1.1.3.4.1.3
اضرب في .
خطوة 1.1.3.4.1.4
اضرب في بجمع الأُسس.
خطوة 1.1.3.4.1.4.1
انقُل .
خطوة 1.1.3.4.1.4.2
اضرب في .
خطوة 1.1.3.4.1.4.2.1
ارفع إلى القوة .
خطوة 1.1.3.4.1.4.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.4.1.4.3
أضف و.
خطوة 1.1.3.4.1.5
اضرب في .
خطوة 1.1.3.4.1.6
اضرب في بجمع الأُسس.
خطوة 1.1.3.4.1.6.1
انقُل .
خطوة 1.1.3.4.1.6.2
اضرب في .
خطوة 1.1.3.4.1.6.2.1
ارفع إلى القوة .
خطوة 1.1.3.4.1.6.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.4.1.6.3
أضف و.
خطوة 1.1.3.4.1.7
اضرب في .
خطوة 1.1.3.4.1.8
اضرب .
خطوة 1.1.3.4.1.8.1
اضرب في .
خطوة 1.1.3.4.1.8.2
ارفع إلى القوة .
خطوة 1.1.3.4.1.8.3
ارفع إلى القوة .
خطوة 1.1.3.4.1.8.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 1.1.3.4.1.8.5
أضف و.
خطوة 1.1.3.4.2
اطرح من .
خطوة 1.1.3.5
طبّق خاصية التوزيع.
خطوة 1.1.3.6
بسّط.
خطوة 1.1.3.6.1
اضرب في .
خطوة 1.1.3.6.2
اضرب في .
خطوة 1.1.3.6.3
اضرب في .
خطوة 1.1.4
طبّق خاصية التوزيع.
خطوة 1.1.5
بسّط.
خطوة 1.1.5.1
اضرب في .
خطوة 1.1.5.2
اضرب في .
خطوة 1.1.5.3
اضرب في .
خطوة 1.1.5.4
اضرب في .
خطوة 1.2
بسّط بجمع الحدود.
خطوة 1.2.1
جمّع الحدود المتعاكسة في .
خطوة 1.2.1.1
أضف و.
خطوة 1.2.1.2
أضف و.
خطوة 1.2.2
اطرح من .
خطوة 2
خطوة 2.1
أخرِج العامل من .
خطوة 2.1.1
أخرِج العامل من .
خطوة 2.1.2
أخرِج العامل من .
خطوة 2.1.3
أخرِج العامل من .
خطوة 2.1.4
أخرِج العامل من .
خطوة 2.1.5
أخرِج العامل من .
خطوة 2.2
حلّل إلى عوامل بالتجميع.
خطوة 2.2.1
أعِد ترتيب الحدود.
خطوة 2.2.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 2.2.2.1
أخرِج العامل من .
خطوة 2.2.2.2
أعِد كتابة في صورة زائد
خطوة 2.2.2.3
طبّق خاصية التوزيع.
خطوة 2.2.2.4
اضرب في .
خطوة 2.2.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.3.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.3
أعِد كتابة بالصيغة .
خطوة 2.4
حلّل إلى عوامل.
خطوة 2.4.1
حلّل إلى عوامل.
خطوة 2.4.1.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 2.4.1.2
احذِف الأقواس غير الضرورية.
خطوة 2.4.2
احذِف الأقواس غير الضرورية.
خطوة 3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4
خطوة 4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.2
أوجِد قيمة في .
خطوة 4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 4.2.2
بسّط .
خطوة 4.2.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 4.2.2.3
زائد أو ناقص يساوي .
خطوة 4.2.3
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 4.2.4
بسّط الطرف الأيمن.
خطوة 4.2.4.1
القيمة الدقيقة لـ هي .
خطوة 4.2.5
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 4.2.6
بسّط .
خطوة 4.2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.6.2
اجمع الكسور.
خطوة 4.2.6.2.1
اجمع و.
خطوة 4.2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 4.2.6.3
بسّط بَسْط الكسر.
خطوة 4.2.6.3.1
اضرب في .
خطوة 4.2.6.3.2
اطرح من .
خطوة 4.2.7
أوجِد فترة .
خطوة 4.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 4.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 4.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.7.4
اقسِم على .
خطوة 4.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
اطرح من كلا المتعادلين.
خطوة 5.2.2
اقسِم كل حد في على وبسّط.
خطوة 5.2.2.1
اقسِم كل حد في على .
خطوة 5.2.2.2
بسّط الطرف الأيسر.
خطوة 5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.2.1.2
اقسِم على .
خطوة 5.2.2.3
بسّط الطرف الأيمن.
خطوة 5.2.2.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5.2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 5.2.4
بسّط .
خطوة 5.2.4.1
أعِد كتابة بالصيغة .
خطوة 5.2.4.2
أي جذر لـ هو .
خطوة 5.2.4.3
اضرب في .
خطوة 5.2.4.4
جمّع وبسّط القاسم.
خطوة 5.2.4.4.1
اضرب في .
خطوة 5.2.4.4.2
ارفع إلى القوة .
خطوة 5.2.4.4.3
ارفع إلى القوة .
خطوة 5.2.4.4.4
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.2.4.4.5
أضف و.
خطوة 5.2.4.4.6
أعِد كتابة بالصيغة .
خطوة 5.2.4.4.6.1
استخدِم لكتابة في صورة .
خطوة 5.2.4.4.6.2
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 5.2.4.4.6.3
اجمع و.
خطوة 5.2.4.4.6.4
ألغِ العامل المشترك لـ .
خطوة 5.2.4.4.6.4.1
ألغِ العامل المشترك.
خطوة 5.2.4.4.6.4.2
أعِد كتابة العبارة.
خطوة 5.2.4.4.6.5
احسِب قيمة الأُس.
خطوة 5.2.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.2.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.2.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.2.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5.2.6
عيّن كل حل من الحلول لإيجاد قيمة .
خطوة 5.2.7
أوجِد قيمة في .
خطوة 5.2.7.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5.2.7.2
بسّط الطرف الأيمن.
خطوة 5.2.7.2.1
القيمة الدقيقة لـ هي .
خطوة 5.2.7.3
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 5.2.7.4
بسّط .
خطوة 5.2.7.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.7.4.2
اجمع الكسور.
خطوة 5.2.7.4.2.1
اجمع و.
خطوة 5.2.7.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.7.4.3
بسّط بَسْط الكسر.
خطوة 5.2.7.4.3.1
اضرب في .
خطوة 5.2.7.4.3.2
اطرح من .
خطوة 5.2.7.5
أوجِد فترة .
خطوة 5.2.7.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.7.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.7.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.7.5.4
اقسِم على .
خطوة 5.2.7.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5.2.8
أوجِد قيمة في .
خطوة 5.2.8.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 5.2.8.2
بسّط الطرف الأيمن.
خطوة 5.2.8.2.1
القيمة الدقيقة لـ هي .
خطوة 5.2.8.3
دالة جيب التمام سالبة في الربعين الثاني والثالث. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 5.2.8.4
بسّط .
خطوة 5.2.8.4.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 5.2.8.4.2
اجمع الكسور.
خطوة 5.2.8.4.2.1
اجمع و.
خطوة 5.2.8.4.2.2
اجمع البسوط على القاسم المشترك.
خطوة 5.2.8.4.3
بسّط بَسْط الكسر.
خطوة 5.2.8.4.3.1
اضرب في .
خطوة 5.2.8.4.3.2
اطرح من .
خطوة 5.2.8.5
أوجِد فترة .
خطوة 5.2.8.5.1
يمكن حساب فترة الدالة باستخدام .
خطوة 5.2.8.5.2
استبدِل بـ في القاعدة للفترة.
خطوة 5.2.8.5.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 5.2.8.5.4
اقسِم على .
خطوة 5.2.8.6
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 5.2.9
اسرِد جميع الحلول.
، لأي عدد صحيح
خطوة 5.2.10
وحّد الإجابات.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
اطرح من كلا المتعادلين.
خطوة 6.2.2
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 6.2.3
بسّط الطرف الأيمن.
خطوة 6.2.3.1
القيمة الدقيقة لـ هي .
خطوة 6.2.4
دالة جيب التمام سالبة في الربعين الثاني والثالث. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 6.2.5
اطرح من .
خطوة 6.2.6
أوجِد فترة .
خطوة 6.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 6.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 6.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 6.2.6.4
اقسِم على .
خطوة 6.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 7
خطوة 7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.2
أوجِد قيمة في .
خطوة 7.2.1
أضف إلى كلا المتعادلين.
خطوة 7.2.2
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 7.2.3
بسّط الطرف الأيمن.
خطوة 7.2.3.1
القيمة الدقيقة لـ هي .
خطوة 7.2.4
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 7.2.5
اطرح من .
خطوة 7.2.6
أوجِد فترة .
خطوة 7.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 7.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 7.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 7.2.6.4
اقسِم على .
خطوة 7.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 9
خطوة 9.1
ادمج و في .
، لأي عدد صحيح
خطوة 9.2
ادمج و في .
، لأي عدد صحيح
خطوة 9.3
ادمج و في .
، لأي عدد صحيح
خطوة 9.4
ادمج و في .
، لأي عدد صحيح
خطوة 9.5
ادمج و في .
، لأي عدد صحيح
، لأي عدد صحيح