إدخال مسألة...
حساب المثلثات الأمثلة
خطوة 1
خطوة 1.1
أوجِد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.2
متجاهلاً اللوغاريتم، ضَع في اعتبارك الدالة الكسرية حيث هي درجة البسط و هي درجة القاسم.
1. إذا كانت ، فإن المحور السيني، ، هو خط التقارب الأفقي.
2. في حالة ، فإن خط التقارب الأفقي هو الخط .
3. في حالة ، لا يوجد خط تقارب أفقي (يوجد خط تقارب مائل).
خطوة 1.3
أوجِد و.
خطوة 1.4
بما أن ، فإن المحور السيني، ، هو خط التقارب الأفقي.
خطوة 1.5
لا توجد خطوط تقارب مائلة للدوال اللوغاريتمية والمثلثية.
لا توجد خطوط تقارب مائلة
خطوة 1.6
هذه هي مجموعة جميع خطوط التقارب.
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوط التقارب الرأسية:
خطوط التقارب الأفقية:
خطوة 2
خطوة 2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2
بسّط النتيجة.
خطوة 2.2.1
اقسِم على .
خطوة 2.2.2
العدد واحد مرفوع لأي قوة يساوي واحدًا.
خطوة 2.2.3
اللوغاريتم الطبيعي لـ يساوي .
خطوة 2.2.4
الإجابة النهائية هي .
خطوة 2.3
حوّل إلى رقم عشري.
خطوة 3
خطوة 3.1
استبدِل المتغير بـ في العبارة.
خطوة 3.2
بسّط النتيجة.
خطوة 3.2.1
وسّع بنقل خارج اللوغاريتم.
خطوة 3.2.2
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1
ألغِ العامل المشترك.
خطوة 3.2.2.2
اقسِم على .
خطوة 3.2.3
الإجابة النهائية هي .
خطوة 3.3
حوّل إلى رقم عشري.
خطوة 4
خطوة 4.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2
بسّط النتيجة.
خطوة 4.2.1
أعِد كتابة بالصيغة .
خطوة 4.2.2
بسّط بنقل داخل اللوغاريتم.
خطوة 4.2.3
اضرب الأُسس في .
خطوة 4.2.3.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.3.2
اجمع و.
خطوة 4.2.4
الإجابة النهائية هي .
خطوة 4.3
حوّل إلى رقم عشري.
خطوة 5
يمكن تمثيل دالة اللوغاريتم بيانيًا باستخدام خط التقارب الرأسي عند والنقاط .
خط التقارب الرأسي:
خطوة 6