حساب المثلثات الأمثلة

Resolver para x cos(2x)(2cos(x)+1)=0
خطوة 1
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 2.2.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
القيمة الدقيقة لـ هي .
خطوة 2.2.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.1
اقسِم كل حد في على .
خطوة 2.2.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.3.2.1.2
اقسِم على .
خطوة 2.2.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.2.3.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.3.3.2.1
اضرب في .
خطوة 2.2.3.3.2.2
اضرب في .
خطوة 2.2.4
دالة جيب التمام موجبة في الربعين الأول والرابع. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الرابع.
خطوة 2.2.5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.1
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.1.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.2.5.1.2
اجمع و.
خطوة 2.2.5.1.3
اجمع البسوط على القاسم المشترك.
خطوة 2.2.5.1.4
اضرب في .
خطوة 2.2.5.1.5
اطرح من .
خطوة 2.2.5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.2.1
اقسِم كل حد في على .
خطوة 2.2.5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.5.2.2.1.2
اقسِم على .
خطوة 2.2.5.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.2.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 2.2.5.2.3.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.5.2.3.2.1
اضرب في .
خطوة 2.2.5.2.3.2.2
اضرب في .
خطوة 2.2.6
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.1
يمكن حساب فترة الدالة باستخدام .
خطوة 2.2.6.2
استبدِل بـ في القاعدة للفترة.
خطوة 2.2.6.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.2.6.4
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.6.4.1
ألغِ العامل المشترك.
خطوة 2.2.6.4.2
اقسِم على .
خطوة 2.2.7
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
اطرح من كلا المتعادلين.
خطوة 3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
اقسِم كل حد في على .
خطوة 3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.2.2.2.1.2
اقسِم على .
خطوة 3.2.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.2.3
خُذ جيب التمام العكسي لكلا المتعادلين لاستخراج من داخل جيب التمام.
خطوة 3.2.4
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.4.1
القيمة الدقيقة لـ هي .
خطوة 3.2.5
دالة جيب التمام سالبة في الربعين الثاني والثالث. لإيجاد الحل الثاني، اطرح زاوية المرجع من لإيجاد الحل في الربع الثالث.
خطوة 3.2.6
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 3.2.6.2
اجمع الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.2.1
اجمع و.
خطوة 3.2.6.2.2
اجمع البسوط على القاسم المشترك.
خطوة 3.2.6.3
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.6.3.1
اضرب في .
خطوة 3.2.6.3.2
اطرح من .
خطوة 3.2.7
أوجِد فترة .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.7.1
يمكن حساب فترة الدالة باستخدام .
خطوة 3.2.7.2
استبدِل بـ في القاعدة للفترة.
خطوة 3.2.7.3
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 3.2.7.4
اقسِم على .
خطوة 3.2.8
فترة دالة هي ، لذا تتكرر القيم كل راديان في كلا الاتجاهين.
، لأي عدد صحيح
، لأي عدد صحيح
، لأي عدد صحيح
خطوة 4
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
، لأي عدد صحيح
خطوة 5
ادمج و في .
، لأي عدد صحيح