ما قبل التفاضل والتكامل الأمثلة

أوجد الجذور (الأصفار) p(x)=2x^3-x^2-4x+2
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1.1
جمّع أول حدين وآخر حدين.
خطوة 2.1.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.1.2
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.1
اقسِم كل حد في على .
خطوة 2.3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.3.2.2.2.1.2
اقسِم على .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2.2
خُذ الجذر المحدد لكلا المتعادلين لحذف الأُس على الطرف الأيسر.
خطوة 2.4.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.4.2.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.4.2.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
خطوة 4