ما قبل التفاضل والتكامل الأمثلة

اكتبه بالصيغة الرئيسية x^2-4y^2-4x=0
خطوة 1
أكمل المربع لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
استخدِم الصيغة لإيجاد قيم و و.
خطوة 1.2
ضع في اعتبارك شكل رأس قطع مكافئ.
خطوة 1.3
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
عوّض بقيمتَي و في القاعدة .
خطوة 1.3.2
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
أخرِج العامل من .
خطوة 1.3.2.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.2.1
أخرِج العامل من .
خطوة 1.3.2.2.2
ألغِ العامل المشترك.
خطوة 1.3.2.2.3
أعِد كتابة العبارة.
خطوة 1.3.2.2.4
اقسِم على .
خطوة 1.4
أوجِد قيمة باستخدام القاعدة .
انقر لعرض المزيد من الخطوات...
خطوة 1.4.1
عوّض بقيم و و في القاعدة .
خطوة 1.4.2
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1.1.1
أعِد كتابة بالصيغة .
خطوة 1.4.2.1.1.2
طبّق قاعدة الضرب على .
خطوة 1.4.2.1.1.3
ارفع إلى القوة .
خطوة 1.4.2.1.1.4
اضرب في .
خطوة 1.4.2.1.1.5
أخرِج العامل من .
خطوة 1.4.2.1.1.6
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.4.2.1.1.6.1
أخرِج العامل من .
خطوة 1.4.2.1.1.6.2
ألغِ العامل المشترك.
خطوة 1.4.2.1.1.6.3
أعِد كتابة العبارة.
خطوة 1.4.2.1.1.6.4
اقسِم على .
خطوة 1.4.2.1.2
اضرب في .
خطوة 1.4.2.2
اطرح من .
خطوة 1.5
عوّض بقيم و و في شكل الرأس .
خطوة 2
استبدِل بـ في المعادلة .
خطوة 3
انقُل إلى المتعادل الأيمن بإضافة إلى كلا الطرفين.
خطوة 4
أضف و.
خطوة 5
اقسِم كل حد على ليصبح الطرف الأيمن مساويًا لواحد.
خطوة 6
بسّط كل حد في المعادلة لتعيين قيمة الطرف الأيمن بحيث تصبح مساوية لـ . تتطلب الصيغة القياسية للقطع الناقص أو القطع الزائد أن يكون المتعادل الأيمن .