ما قبل التفاضل والتكامل الأمثلة

خطوة 1
اعزِل إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
اقسِم كل حد في على .
خطوة 1.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.2.1.2
اقسِم على .
خطوة 1.3
أضف إلى كلا المتعادلين.
خطوة 1.4
أعِد ترتيب الحدود.
خطوة 2
استخدِم صيغة الرأس، ، لتحديد قيم و و.
خطوة 3
بما أن قيمة موجبة، إذن القطع المكافئ مفتوح إلى أعلى.
مفتوح إلى أعلى
خطوة 4
أوجِد الرأس .
خطوة 5
أوجِد ، المسافة من الرأس إلى البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أوجِد المسافة من الرأس إلى بؤرة القطع المكافئ باستخدام القاعدة التالية.
خطوة 5.2
عوّض بقيمة في القاعدة.
خطوة 5.3
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.3.1
اجمع و.
خطوة 5.3.2
اقسِم على .
خطوة 6
أوجِد البؤرة.
انقر لعرض المزيد من الخطوات...
خطوة 6.1
يمكن إيجاد بؤرة القطع المكافئ بجمع مع الإحداثي الصادي إذا كان القطع المكافئ مفتوحًا إلى أعلى أو إلى أسفل.
خطوة 6.2
عوّض بقيم و و المعروفة في القاعدة وبسّط.
خطوة 7
أوجِد محور التناظر بإيجاد الخط الذي يمر عبر الرأس والبؤرة.
خطوة 8
أوجِد الدليل.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
دليل القطع المكافئ هو الخط الأفقي الذي يمكن إيجاده بطرح من الإحداثي الصادي للرأس إذا كان القطع المكافئ مفتوح إلى أعلى أو إلى أسفل.
خطوة 8.2
عوّض بقيمتَي و المعروفتين في القاعدة وبسّط.
خطوة 9
استخدِم خصائص القطع المكافئ لتحليل القطع المكافئ وتمثيله بيانيًا.
الاتجاه: مفتوح للأعلى
الرأس:
البؤرة:
محور التناظر:
الدليل:
خطوة 10