إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
اطرح من .
خطوة 2
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
اقسِم على .
خطوة 3
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 4
خطوة 4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.2.3
اجمع و.
خطوة 4.2.4
اجمع البسوط على القاسم المشترك.
خطوة 4.2.5
بسّط بَسْط الكسر.
خطوة 4.2.5.1
اضرب في .
خطوة 4.2.5.2
اطرح من .
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
خطوة 4.3.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.3.3.2
اضرب .
خطوة 4.3.3.2.1
اضرب في .
خطوة 4.3.3.2.2
اضرب في .
خطوة 4.4
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 4.5
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.5.1
اطرح من كلا المتعادلين.
خطوة 4.5.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 4.5.3
اجمع و.
خطوة 4.5.4
اجمع البسوط على القاسم المشترك.
خطوة 4.5.5
بسّط بَسْط الكسر.
خطوة 4.5.5.1
اضرب في .
خطوة 4.5.5.2
اطرح من .
خطوة 4.5.6
انقُل السالب أمام الكسر.
خطوة 4.6
اقسِم كل حد في على وبسّط.
خطوة 4.6.1
اقسِم كل حد في على .
خطوة 4.6.2
بسّط الطرف الأيسر.
خطوة 4.6.2.1
ألغِ العامل المشترك لـ .
خطوة 4.6.2.1.1
ألغِ العامل المشترك.
خطوة 4.6.2.1.2
اقسِم على .
خطوة 4.6.3
بسّط الطرف الأيمن.
خطوة 4.6.3.1
اضرب بسط الكسر في مقلوب القاسم.
خطوة 4.6.3.2
اضرب .
خطوة 4.6.3.2.1
اضرب في .
خطوة 4.6.3.2.2
اضرب في .
خطوة 4.7
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: