إدخال مسألة...
ما قبل التفاضل والتكامل الأمثلة
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
خطوة 2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 2.2
أخرِج العامل من .
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.2
أخرِج العامل من .
خطوة 2.2.3
أخرِج العامل من .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
خطوة 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.4.2.2
بسّط .
خطوة 2.4.2.2.1
أعِد كتابة بالصيغة .
خطوة 2.4.2.2.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 2.4.2.2.3
زائد أو ناقص يساوي .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
خُذ اللوغاريتم الطبيعي لكلا المتعادلين لحذف المتغير من الأُس.
خطوة 2.5.2.2
لا يمكن حل المعادلة لأن غير معرّفة.
غير معرّف
خطوة 2.5.2.3
لا يوجد حل لـ
لا يوجد حل
لا يوجد حل
لا يوجد حل
خطوة 2.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.6.2
أوجِد قيمة في .
خطوة 2.6.2.1
اطرح من كلا المتعادلين.
خطوة 2.6.2.2
اقسِم كل حد في على وبسّط.
خطوة 2.6.2.2.1
اقسِم كل حد في على .
خطوة 2.6.2.2.2
بسّط الطرف الأيسر.
خطوة 2.6.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.6.2.2.2.1.2
اقسِم على .
خطوة 2.6.2.2.3
بسّط الطرف الأيمن.
خطوة 2.6.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 2.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 3