ما قبل التفاضل والتكامل الأمثلة

أوجد مجال التعريف f(x)=1/( الجذر التربيعي لـ 5x^2+14x-3)
خطوة 1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حوّل المتباينة إلى معادلة.
خطوة 2.2
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أعِد كتابة في صورة زائد
خطوة 2.2.1.3
طبّق خاصية التوزيع.
خطوة 2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
جمّع أول حدين وآخر حدين.
خطوة 2.2.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 2.2.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.1
أضف إلى كلا المتعادلين.
خطوة 2.4.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.1
اقسِم كل حد في على .
خطوة 2.4.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 2.4.2.2.2.1.2
اقسِم على .
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
اطرح من كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 2.7
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 2.8
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.8.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.8.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.8.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 2.8.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.8.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.8.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.8.2.3
الطرف الأيسر أصغر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
خطأ
خطأ
خطوة 2.8.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 2.8.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 2.8.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 2.8.3.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
صائب
صائب
خطوة 2.8.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 2.9
يتكون الحل من جميع الفترات الصحيحة.
أو
أو
خطوة 3
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 4
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 4.2
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
استخدِم لكتابة في صورة .
خطوة 4.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 4.2.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 4.2.2.1.2
بسّط.
خطوة 4.2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
ينتج عن رفع إلى أي قوة موجبة.
خطوة 4.3
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
حلّل إلى عوامل بالتجميع.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1.1
أخرِج العامل من .
خطوة 4.3.1.1.2
أعِد كتابة في صورة زائد
خطوة 4.3.1.1.3
طبّق خاصية التوزيع.
خطوة 4.3.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 4.3.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.3.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.3.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.3.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.1
أضف إلى كلا المتعادلين.
خطوة 4.3.3.2.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.2.1
اقسِم كل حد في على .
خطوة 4.3.3.2.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.3.2.2.2.1.2
اقسِم على .
خطوة 4.3.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.3.4.2
اطرح من كلا المتعادلين.
خطوة 4.3.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4.4
استبعِد الحلول التي لا تجعل صحيحة.
خطوة 5
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 6