إدخال مسألة...
ما قبل الجبر الأمثلة
خطوة 1
خطوة 1.1
أعِد كتابة بالصيغة .
خطوة 1.2
بما أن كلا الحدّين هما مكعبان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مكعبين، حيث و.
خطوة 1.3
بسّط.
خطوة 1.3.1
انقُل إلى يسار .
خطوة 1.3.2
ارفع إلى القوة .
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.5
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
بسّط كل حد.
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
خطوة 3.2.1.1.1
ألغِ العامل المشترك.
خطوة 3.2.1.1.2
أعِد كتابة العبارة.
خطوة 3.2.1.2
طبّق خاصية التوزيع.
خطوة 3.2.1.3
بسّط.
خطوة 3.2.1.3.1
اضرب في بجمع الأُسس.
خطوة 3.2.1.3.1.1
انقُل .
خطوة 3.2.1.3.1.2
اضرب في .
خطوة 3.2.1.3.1.2.1
ارفع إلى القوة .
خطوة 3.2.1.3.1.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 3.2.1.3.1.3
أضف و.
خطوة 3.2.1.3.2
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.3.3
اضرب في .
خطوة 3.2.1.4
بسّط كل حد.
خطوة 3.2.1.4.1
اضرب في بجمع الأُسس.
خطوة 3.2.1.4.1.1
انقُل .
خطوة 3.2.1.4.1.2
اضرب في .
خطوة 3.2.1.4.2
اضرب في .
خطوة 3.2.1.5
ألغِ العامل المشترك لـ .
خطوة 3.2.1.5.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.2.1.5.2
أخرِج العامل من .
خطوة 3.2.1.5.3
ألغِ العامل المشترك.
خطوة 3.2.1.5.4
أعِد كتابة العبارة.
خطوة 3.2.1.6
طبّق خاصية التوزيع.
خطوة 3.2.1.7
اضرب في .
خطوة 3.2.2
اطرح من .
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
ألغِ العامل المشترك لـ .
خطوة 3.3.1.1
ألغِ العامل المشترك.
خطوة 3.3.1.2
أعِد كتابة العبارة.
خطوة 4
خطوة 4.1
اطرح من كلا المتعادلين.
خطوة 4.2
اطرح من .
خطوة 4.3
حلّل المتعادل الأيسر إلى عوامل.
خطوة 4.3.1
أخرِج العامل من .
خطوة 4.3.1.1
أخرِج العامل من .
خطوة 4.3.1.2
أخرِج العامل من .
خطوة 4.3.1.3
أخرِج العامل من .
خطوة 4.3.1.4
أخرِج العامل من .
خطوة 4.3.1.5
أخرِج العامل من .
خطوة 4.3.1.6
أخرِج العامل من .
خطوة 4.3.1.7
أخرِج العامل من .
خطوة 4.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.3.2.1
جمّع أول حدين وآخر حدين.
خطوة 4.3.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.3.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.3.4
أعِد كتابة بالصيغة .
خطوة 4.3.5
حلّل إلى عوامل.
خطوة 4.3.5.1
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 4.3.5.2
احذِف الأقواس غير الضرورية.
خطوة 4.3.6
حلّل إلى عوامل.
خطوة 4.3.6.1
اجمع الأُسس.
خطوة 4.3.6.1.1
ارفع إلى القوة .
خطوة 4.3.6.1.2
ارفع إلى القوة .
خطوة 4.3.6.1.3
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 4.3.6.1.4
أضف و.
خطوة 4.3.6.2
احذِف الأقواس غير الضرورية.
خطوة 4.4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 4.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2
أوجِد قيمة في .
خطوة 4.5.2.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.5.2.2
اطرح من كلا المتعادلين.
خطوة 4.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 4.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 4.6.2
أضف إلى كلا المتعادلين.
خطوة 4.7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 5
استبعِد الحلول التي لا تجعل صحيحة.