إدخال مسألة...
ما قبل الجبر الأمثلة
خطوة 1
خطوة 1.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.2
أوجِد قيمة .
خطوة 1.2.1
احذِف حد القيمة المطلقة. يؤدي ذلك إلى وجود على المتعادل الأيمن لأن .
خطوة 1.2.2
زائد أو ناقص يساوي .
خطوة 1.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
خطوة 2.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 2.1.1
استبدِل المتغير بـ في العبارة.
خطوة 2.1.2
بسّط النتيجة.
خطوة 2.1.2.1
بسّط كل حد.
خطوة 2.1.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.1.2.1.2
اقسِم على .
خطوة 2.1.2.2
اطرح من .
خطوة 2.1.2.3
الإجابة النهائية هي .
خطوة 2.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 2.2.1
استبدِل المتغير بـ في العبارة.
خطوة 2.2.2
بسّط النتيجة.
خطوة 2.2.2.1
بسّط كل حد.
خطوة 2.2.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.2.2.1.2
اقسِم على .
خطوة 2.2.2.2
اطرح من .
خطوة 2.2.2.3
الإجابة النهائية هي .
خطوة 2.3
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 2.3.1
استبدِل المتغير بـ في العبارة.
خطوة 2.3.2
بسّط النتيجة.
خطوة 2.3.2.1
بسّط كل حد.
خطوة 2.3.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.3.2.1.2
اقسِم على .
خطوة 2.3.2.2
أضف و.
خطوة 2.3.2.3
الإجابة النهائية هي .
خطوة 2.4
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 2.4.1
استبدِل المتغير بـ في العبارة.
خطوة 2.4.2
بسّط النتيجة.
خطوة 2.4.2.1
بسّط كل حد.
خطوة 2.4.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.4.2.1.2
اقسِم على .
خطوة 2.4.2.2
أضف و.
خطوة 2.4.2.3
الإجابة النهائية هي .
خطوة 2.5
يمكن تمثيل القيمة المطلقة بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 3