إدخال مسألة...
ما قبل الجبر الأمثلة
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
خطوة 2.1
لإيجاد الإحداثي للرأس، عيّن قيمة ما بين شريطَي القيمة المطلقة لتصبح مساوية لـ . في هذه الحالة، .
خطوة 2.2
استبدِل المتغير بـ في العبارة.
خطوة 2.3
بسّط .
خطوة 2.3.1
بسّط كل حد.
خطوة 2.3.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 2.3.1.2
اضرب في .
خطوة 2.3.2
أضف و.
خطوة 2.4
رأس القيمة المطلقة هو .
خطوة 3
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
خطوة 4.1
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.1.1
استبدِل المتغير بـ في العبارة.
خطوة 4.1.2
بسّط النتيجة.
خطوة 4.1.2.1
بسّط كل حد.
خطوة 4.1.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.1.2.1.2
اضرب في .
خطوة 4.1.2.2
اطرح من .
خطوة 4.1.2.3
الإجابة النهائية هي .
خطوة 4.2
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.2.1
استبدِل المتغير بـ في العبارة.
خطوة 4.2.2
بسّط النتيجة.
خطوة 4.2.2.1
بسّط كل حد.
خطوة 4.2.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.2.2.1.2
اضرب في .
خطوة 4.2.2.2
اطرح من .
خطوة 4.2.2.3
الإجابة النهائية هي .
خطوة 4.3
عوّض بقيمة التي تساوي في . في هذه الحالة، النقطة هي .
خطوة 4.3.1
استبدِل المتغير بـ في العبارة.
خطوة 4.3.2
بسّط النتيجة.
خطوة 4.3.2.1
بسّط كل حد.
خطوة 4.3.2.1.1
القيمة المطلقة للعدد هي المسافة بين العدد والصفر. المسافة بين و تساوي .
خطوة 4.3.2.1.2
اضرب في .
خطوة 4.3.2.2
اطرح من .
خطوة 4.3.2.3
الإجابة النهائية هي .
خطوة 4.4
يمكن تمثيل القيمة المطلقة بيانيًا باستخدام النقاط الواقعة حول الرأس
خطوة 5