ما قبل الجبر الأمثلة

الرسم البياني 3x+4=6y-8
خطوة 1
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أعِد كتابة المعادلة في صورة .
خطوة 1.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.2.1
أضف إلى كلا المتعادلين.
خطوة 1.2.2
أضف و.
خطوة 1.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.1
اقسِم كل حد في على .
خطوة 1.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 1.3.2.1.1
ألغِ العامل المشترك.
خطوة 1.3.2.1.2
اقسِم على .
خطوة 1.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1.1
أخرِج العامل من .
خطوة 1.3.3.1.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 1.3.3.1.1.2.1
أخرِج العامل من .
خطوة 1.3.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 1.3.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 1.3.3.1.2
اقسِم على .
خطوة 2
أعِد الكتابة بصيغة تقاطع الميل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 2.2
أعِد ترتيب الحدود.
خطوة 3
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 3.2
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 4
يمكن تمثيل أي خط بيانيًا باستخدام نقطتين. اختر قيمتين من قيم ، وعوّض بهما في المعادلة لإيجاد قيم المناظرة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
أعِد ترتيب الحدود.
خطوة 4.2
أنشئ جدولاً بقيمتَي و.
خطوة 5
مثّل الخط بيانيًا باستخدام الميل ونقطة التقاطع مع المحور الصادي أو النقاط.
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 6