إدخال مسألة...
ما قبل الجبر الأمثلة
خطوة 1
خطوة 1.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
اطرح من كلا المتعادلين.
خطوة 1.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.1
اقسِم كل حد في على .
خطوة 1.2.2
بسّط الطرف الأيسر.
خطوة 1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.2.1.2
اقسِم على .
خطوة 1.2.3
بسّط الطرف الأيمن.
خطوة 1.2.3.1
بسّط كل حد.
خطوة 1.2.3.1.1
ألغِ العامل المشترك لـ .
خطوة 1.2.3.1.1.1
ألغِ العامل المشترك.
خطوة 1.2.3.1.1.2
اقسِم على .
خطوة 1.2.3.1.2
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2
خطوة 2.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 2.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 2.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 3
خطوة 3.1
أوجِد نقطة التقاطع مع المحور السيني.
خطوة 3.1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 3.1.2
أوجِد حل المعادلة.
خطوة 3.1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 3.1.2.2
اطرح من كلا المتعادلين.
خطوة 3.1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 3.2
أوجِد نقطة التقاطع مع المحور الصادي.
خطوة 3.2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 3.2.2
أوجِد حل المعادلة.
خطوة 3.2.2.1
احذِف الأقواس.
خطوة 3.2.2.2
احذِف الأقواس.
خطوة 3.2.2.3
أضف و.
خطوة 3.2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 3.3
أنشئ جدولاً بقيمتَي و.
خطوة 4
مثّل الخط بيانيًا باستخدام الميل ونقطة التقاطع مع المحور الصادي أو النقاط.
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 5