ما قبل الجبر الأمثلة

الرسم البياني y=x-1/2
خطوة 1
استخدِم صيغة تقاطع الميل لإيجاد الميل ونقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 1.1
صيغة تقاطع الميل هي ، حيث هي الميل و هي نقطة التقاطع مع المحور الصادي.
خطوة 1.2
أوجِد قيمتَي و باستخدام الصيغة .
خطوة 1.3
ميل الخط المستقيم يمثل قيمة ، ونقطة التقاطع مع المحور الصادي تمثل قيمة .
الميل:
نقطة التقاطع مع المحور الصادي:
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 2
يمكن تمثيل أي خط بيانيًا باستخدام نقطتين. اختر قيمتين من قيم ، وعوّض بهما في المعادلة لإيجاد قيم المناظرة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
أوجِد نقطة التقاطع مع المحور السيني.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
لإيجاد نقطة (نقاط) التقاطع مع المحور السيني، عوّض بـ عن وأوجِد قيمة .
خطوة 2.1.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أعِد كتابة المعادلة في صورة .
خطوة 2.1.2.2
أضف إلى كلا المتعادلين.
خطوة 2.1.3
نقطة (نقاط) التقاطع مع المحور السيني بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور السيني:
نقطة (نقاط) التقاطع مع المحور السيني:
خطوة 2.2
أوجِد نقطة التقاطع مع المحور الصادي.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
لإيجاد نقطة (نقاط) التقاطع مع المحور الصادي، عوّض بـ عن وأوجِد قيمة .
خطوة 2.2.2
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.2.1
احذِف الأقواس.
خطوة 2.2.2.2
احذِف الأقواس.
خطوة 2.2.2.3
اطرح من .
خطوة 2.2.3
نقطة (نقاط) التقاطع مع المحور الصادي بصيغة النقطة.
نقطة (نقاط) التقاطع مع المحور الصادي:
نقطة (نقاط) التقاطع مع المحور الصادي:
خطوة 2.3
أنشئ جدولاً بقيمتَي و.
خطوة 3
مثّل الخط بيانيًا باستخدام الميل ونقطة التقاطع مع المحور الصادي أو النقاط.
الميل:
نقطة التقاطع مع المحور الصادي:
خطوة 4