إدخال مسألة...
ما قبل الجبر الأمثلة
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
ارفع إلى القوة .
خطوة 3
خطوة 3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 3.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 3.4
لها العاملان و.
خطوة 3.5
العوامل الأساسية لـ هي .
خطوة 3.5.1
لها العاملان و.
خطوة 3.5.2
لها العاملان و.
خطوة 3.5.3
لها العاملان و.
خطوة 3.5.4
لها العاملان و.
خطوة 3.5.5
لها العاملان و.
خطوة 3.6
اضرب .
خطوة 3.6.1
اضرب في .
خطوة 3.6.2
اضرب في .
خطوة 3.6.3
اضرب في .
خطوة 3.6.4
اضرب في .
خطوة 3.6.5
اضرب في .
خطوة 3.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.8
عوامل هي ، والتي تساوي حاصل ضرب في بعضها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 3.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3.10
اضرب في .
خطوة 3.11
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 4
خطوة 4.1
اضرب كل حد في في .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
بسّط كل حد.
خطوة 4.2.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.1.2
ألغِ العامل المشترك لـ .
خطوة 4.2.1.2.1
أخرِج العامل من .
خطوة 4.2.1.2.2
أخرِج العامل من .
خطوة 4.2.1.2.3
ألغِ العامل المشترك.
خطوة 4.2.1.2.4
أعِد كتابة العبارة.
خطوة 4.2.1.3
اجمع و.
خطوة 4.2.1.4
ألغِ العامل المشترك لـ .
خطوة 4.2.1.4.1
أخرِج العامل من .
خطوة 4.2.1.4.2
ألغِ العامل المشترك.
خطوة 4.2.1.4.3
أعِد كتابة العبارة.
خطوة 4.2.1.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.1.6
ألغِ العامل المشترك لـ .
خطوة 4.2.1.6.1
أخرِج العامل من .
خطوة 4.2.1.6.2
أخرِج العامل من .
خطوة 4.2.1.6.3
ألغِ العامل المشترك.
خطوة 4.2.1.6.4
أعِد كتابة العبارة.
خطوة 4.2.1.7
اجمع و.
خطوة 4.2.1.8
اضرب في .
خطوة 4.2.1.9
ألغِ العامل المشترك لـ .
خطوة 4.2.1.9.1
ألغِ العامل المشترك.
خطوة 4.2.1.9.2
أعِد كتابة العبارة.
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
ألغِ العامل المشترك لـ .
خطوة 4.3.1.1
أخرِج العامل من .
خطوة 4.3.1.2
ألغِ العامل المشترك.
خطوة 4.3.1.3
أعِد كتابة العبارة.
خطوة 5
خطوة 5.1
اطرح من كلا المتعادلين.
خطوة 5.2
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 5.3
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 5.4
بسّط.
خطوة 5.4.1
بسّط بَسْط الكسر.
خطوة 5.4.1.1
ارفع إلى القوة .
خطوة 5.4.1.2
اضرب .
خطوة 5.4.1.2.1
اضرب في .
خطوة 5.4.1.2.2
اضرب في .
خطوة 5.4.1.3
أضف و.
خطوة 5.4.1.4
أعِد كتابة بالصيغة .
خطوة 5.4.1.4.1
أخرِج العامل من .
خطوة 5.4.1.4.2
أعِد كتابة بالصيغة .
خطوة 5.4.1.5
أخرِج الحدود من تحت الجذر.
خطوة 5.4.2
اضرب في .
خطوة 5.4.3
بسّط .
خطوة 5.5
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: