إدخال مسألة...
الجبر الخطي الأمثلة
خطوة 1
عيّن الصيغة لإيجاد المعادلة المميزة .
خطوة 2
المصفوفة المتطابقة أو مصفوفة الوحدة ذات الحجم هي المصفوفة المربعة التي تكون فيها جميع العناصر الواقعة على القطر الرئيسي مساوية لواحد بينما تكون جميع عناصرها في أي مكان آخر مساوية لصفر.
خطوة 3
خطوة 3.1
عوّض بقيمة التي تساوي .
خطوة 3.2
عوّض بقيمة التي تساوي .
خطوة 4
خطوة 4.1
بسّط كل حد.
خطوة 4.1.1
اضرب في كل عنصر من عناصر المصفوفة.
خطوة 4.1.2
بسّط كل عنصر في المصفوفة.
خطوة 4.1.2.1
اضرب في .
خطوة 4.1.2.2
اضرب .
خطوة 4.1.2.2.1
اضرب في .
خطوة 4.1.2.2.2
اضرب في .
خطوة 4.1.2.3
اضرب .
خطوة 4.1.2.3.1
اضرب في .
خطوة 4.1.2.3.2
اضرب في .
خطوة 4.1.2.4
اضرب .
خطوة 4.1.2.4.1
اضرب في .
خطوة 4.1.2.4.2
اضرب في .
خطوة 4.1.2.5
اضرب في .
خطوة 4.1.2.6
اضرب .
خطوة 4.1.2.6.1
اضرب في .
خطوة 4.1.2.6.2
اضرب في .
خطوة 4.1.2.7
اضرب .
خطوة 4.1.2.7.1
اضرب في .
خطوة 4.1.2.7.2
اضرب في .
خطوة 4.1.2.8
اضرب .
خطوة 4.1.2.8.1
اضرب في .
خطوة 4.1.2.8.2
اضرب في .
خطوة 4.1.2.9
اضرب في .
خطوة 4.2
اجمع العناصر المتناظرة.
خطوة 4.3
Simplify each element.
خطوة 4.3.1
أضف و.
خطوة 4.3.2
أضف و.
خطوة 4.3.3
أضف و.
خطوة 4.3.4
أضف و.
خطوة 4.3.5
أضف و.
خطوة 4.3.6
أضف و.
خطوة 5
خطوة 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
خطوة 5.1.1
Consider the corresponding sign chart.
خطوة 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
خطوة 5.1.3
The minor for is the determinant with row and column deleted.
خطوة 5.1.4
Multiply element by its cofactor.
خطوة 5.1.5
The minor for is the determinant with row and column deleted.
خطوة 5.1.6
Multiply element by its cofactor.
خطوة 5.1.7
The minor for is the determinant with row and column deleted.
خطوة 5.1.8
Multiply element by its cofactor.
خطوة 5.1.9
Add the terms together.
خطوة 5.2
احسِب قيمة .
خطوة 5.2.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 5.2.2
بسّط المحدد.
خطوة 5.2.2.1
بسّط كل حد.
خطوة 5.2.2.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 5.2.2.1.1.1
طبّق خاصية التوزيع.
خطوة 5.2.2.1.1.2
طبّق خاصية التوزيع.
خطوة 5.2.2.1.1.3
طبّق خاصية التوزيع.
خطوة 5.2.2.1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 5.2.2.1.2.1
بسّط كل حد.
خطوة 5.2.2.1.2.1.1
اضرب في .
خطوة 5.2.2.1.2.1.2
اضرب في .
خطوة 5.2.2.1.2.1.3
اضرب في .
خطوة 5.2.2.1.2.1.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.2.2.1.2.1.5
اضرب في بجمع الأُسس.
خطوة 5.2.2.1.2.1.5.1
انقُل .
خطوة 5.2.2.1.2.1.5.2
اضرب في .
خطوة 5.2.2.1.2.1.6
اضرب في .
خطوة 5.2.2.1.2.1.7
اضرب في .
خطوة 5.2.2.1.2.2
اطرح من .
خطوة 5.2.2.1.3
اضرب في .
خطوة 5.2.2.2
اطرح من .
خطوة 5.2.2.3
أعِد ترتيب و.
خطوة 5.3
احسِب قيمة .
خطوة 5.3.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 5.3.2
بسّط المحدد.
خطوة 5.3.2.1
بسّط كل حد.
خطوة 5.3.2.1.1
اضرب في .
خطوة 5.3.2.1.2
اضرب في .
خطوة 5.3.2.2
اطرح من .
خطوة 5.4
احسِب قيمة .
خطوة 5.4.1
يمكن إيجاد محدد المصفوفة باستخدام القاعدة .
خطوة 5.4.2
بسّط المحدد.
خطوة 5.4.2.1
بسّط كل حد.
خطوة 5.4.2.1.1
اضرب في .
خطوة 5.4.2.1.2
طبّق خاصية التوزيع.
خطوة 5.4.2.1.3
اضرب في .
خطوة 5.4.2.1.4
اضرب .
خطوة 5.4.2.1.4.1
اضرب في .
خطوة 5.4.2.1.4.2
اضرب في .
خطوة 5.4.2.2
اطرح من .
خطوة 5.4.2.3
أعِد ترتيب و.
خطوة 5.5
بسّط المحدد.
خطوة 5.5.1
بسّط كل حد.
خطوة 5.5.1.1
وسّع بضرب كل حد في العبارة الأولى في كل حد في العبارة الثانية.
خطوة 5.5.1.2
بسّط كل حد.
خطوة 5.5.1.2.1
اضرب في .
خطوة 5.5.1.2.2
اضرب في .
خطوة 5.5.1.2.3
اضرب في بجمع الأُسس.
خطوة 5.5.1.2.3.1
انقُل .
خطوة 5.5.1.2.3.2
اضرب في .
خطوة 5.5.1.2.3.2.1
ارفع إلى القوة .
خطوة 5.5.1.2.3.2.2
استخدِم قاعدة القوة لتجميع الأُسس.
خطوة 5.5.1.2.3.3
أضف و.
خطوة 5.5.1.2.4
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 5.5.1.2.5
اضرب في بجمع الأُسس.
خطوة 5.5.1.2.5.1
انقُل .
خطوة 5.5.1.2.5.2
اضرب في .
خطوة 5.5.1.2.6
اضرب في .
خطوة 5.5.1.2.7
اضرب في .
خطوة 5.5.1.3
أضف و.
خطوة 5.5.1.4
اطرح من .
خطوة 5.5.1.5
طبّق خاصية التوزيع.
خطوة 5.5.1.6
اضرب .
خطوة 5.5.1.6.1
اضرب في .
خطوة 5.5.1.6.2
اضرب في .
خطوة 5.5.1.7
اضرب في .
خطوة 5.5.1.8
اضرب في .
خطوة 5.5.2
أضف و.
خطوة 5.5.3
أضف و.
خطوة 5.5.4
اطرح من .
خطوة 5.5.5
اطرح من .
خطوة 5.5.6
انقُل .
خطوة 5.5.7
أعِد ترتيب و.
خطوة 6
عيّن قيمة متعدد الحدود المميز بحيث تصبح مساوية لـ لإيجاد القيم الذاتية .
خطوة 7
خطوة 7.1
حلّل المتعادل الأيسر إلى عوامل.
خطوة 7.1.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 7.1.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 7.1.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 7.1.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 7.1.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 7.1.1.3.2
ارفع إلى القوة .
خطوة 7.1.1.3.3
اضرب في .
خطوة 7.1.1.3.4
ارفع إلى القوة .
خطوة 7.1.1.3.5
اضرب في .
خطوة 7.1.1.3.6
أضف و.
خطوة 7.1.1.3.7
اضرب في .
خطوة 7.1.1.3.8
اطرح من .
خطوة 7.1.1.3.9
أضف و.
خطوة 7.1.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 7.1.1.5
اقسِم على .
خطوة 7.1.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | - | + | - | + |
خطوة 7.1.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | |||||||||||
- | - | + | - | + |
خطوة 7.1.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | |||||||||||
- | - | + | - | + | |||||||
- | + |
خطوة 7.1.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | |||||||||||
- | - | + | - | + | |||||||
+ | - |
خطوة 7.1.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ |
خطوة 7.1.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | |||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
خطوة 7.1.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - |
خطوة 7.1.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 7.1.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 7.1.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- |
خطوة 7.1.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | ||||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 7.1.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
خطوة 7.1.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
- | + |
خطوة 7.1.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 7.1.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | - | |||||||||
- | - | + | - | + | |||||||
+ | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
خطوة 7.1.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 7.1.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 7.1.2
حلّل إلى عوامل بالتجميع.
خطوة 7.1.2.1
حلّل إلى عوامل بالتجميع.
خطوة 7.1.2.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 7.1.2.1.1.1
أخرِج العامل من .
خطوة 7.1.2.1.1.2
أعِد كتابة في صورة زائد
خطوة 7.1.2.1.1.3
طبّق خاصية التوزيع.
خطوة 7.1.2.1.1.4
اضرب في .
خطوة 7.1.2.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 7.1.2.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 7.1.2.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 7.1.2.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 7.1.2.2
احذِف الأقواس غير الضرورية.
خطوة 7.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 7.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 7.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.3.2
أضف إلى كلا المتعادلين.
خطوة 7.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 7.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.4.2
أضف إلى كلا المتعادلين.
خطوة 7.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.