الرياضيات المتناهية الأمثلة

خطوة 1
أعِد الكتابة بحيث تصبح في الطرف الأيسر للمتباينة.
خطوة 2
حوّل المتباينة إلى معادلة.
خطوة 3
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 4
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 5
بسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط بَسْط الكسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
ارفع إلى القوة .
خطوة 5.1.2
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 5.1.2.1
اضرب في .
خطوة 5.1.2.2
اضرب في .
خطوة 5.1.3
أضف و.
خطوة 5.2
اضرب في .
خطوة 5.3
بسّط .
خطوة 6
وحّد الحلول.
خطوة 7
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 8
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 8.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 8.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 8.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 8.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 8.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 8.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 8.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 8.2.3
الطرف الأيسر ليس أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة خطأ.
False
False
خطوة 8.3
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 8.3.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 8.3.2
استبدِل بـ في المتباينة الأصلية.
خطوة 8.3.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 8.4
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
خطأ
صحيحة
صحيحة
خطأ
صحيحة
خطوة 9
يتكون الحل من جميع الفترات الصحيحة.
أو
خطوة 10
يمكن عرض النتيجة بصيغ متعددة.
صيغة التباين:
ترميز الفترة:
خطوة 11