إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
عيّن قيمة القاسم في بحيث تصبح مساوية لـ لإيجاد الموضع الذي تكون فيه العبارة غير معرّفة.
خطوة 1.2
أوجِد قيمة .
خطوة 1.2.1
حلّل المتعادل الأيسر إلى عوامل.
خطوة 1.2.1.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 1.2.1.2
أخرِج العامل من .
خطوة 1.2.1.2.1
ارفع إلى القوة .
خطوة 1.2.1.2.2
أخرِج العامل من .
خطوة 1.2.1.2.3
أخرِج العامل من .
خطوة 1.2.1.2.4
أخرِج العامل من .
خطوة 1.2.1.3
استبدِل كافة حالات حدوث بـ .
خطوة 1.2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 1.2.3
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 1.2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 1.2.4.2
أوجِد قيمة في .
خطوة 1.2.4.2.1
اطرح من كلا المتعادلين.
خطوة 1.2.4.2.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.4.2.2.1
اقسِم كل حد في على .
خطوة 1.2.4.2.2.2
بسّط الطرف الأيسر.
خطوة 1.2.4.2.2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 1.2.4.2.2.2.2
اقسِم على .
خطوة 1.2.4.2.2.3
بسّط الطرف الأيمن.
خطوة 1.2.4.2.2.3.1
اقسِم على .
خطوة 1.2.5
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 1.3
النطاق هو جميع قيم التي تجعل العبارة معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 2
بما أن النطاق لا يشمل جميع الأعداد الحقيقية، إذن غير متصلة على جميع الأعداد الحقيقية.
غير متصلة
خطوة 3