إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
أضف إلى كلا المتعادلين.
خطوة 2
خطوة 2.1
بسّط كل حد.
خطوة 2.1.1
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 2.1.1.1
طبّق خاصية التوزيع.
خطوة 2.1.1.2
طبّق خاصية التوزيع.
خطوة 2.1.1.3
طبّق خاصية التوزيع.
خطوة 2.1.2
بسّط ووحّد الحدود المتشابهة.
خطوة 2.1.2.1
بسّط كل حد.
خطوة 2.1.2.1.1
اضرب في بجمع الأُسس.
خطوة 2.1.2.1.1.1
انقُل .
خطوة 2.1.2.1.1.2
اضرب في .
خطوة 2.1.2.1.2
اضرب في .
خطوة 2.1.2.1.3
اضرب في .
خطوة 2.1.2.2
أضف و.
خطوة 2.1.3
طبّق خاصية التوزيع.
خطوة 2.1.4
اضرب في .
خطوة 2.2
اطرح من .
خطوة 2.3
اطرح من .
خطوة 2.4
أضف و.
خطوة 3
خطوة 3.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.1.1
أخرِج العامل من .
خطوة 3.1.2
أعِد كتابة في صورة زائد
خطوة 3.1.3
طبّق خاصية التوزيع.
خطوة 3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.2.1
جمّع أول حدين وآخر حدين.
خطوة 3.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 5
خطوة 5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5.2
أوجِد قيمة في .
خطوة 5.2.1
اطرح من كلا المتعادلين.
خطوة 5.2.2
اقسِم كل حد في على وبسّط.
خطوة 5.2.2.1
اقسِم كل حد في على .
خطوة 5.2.2.2
بسّط الطرف الأيسر.
خطوة 5.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 5.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.2.1.2
اقسِم على .
خطوة 5.2.2.3
بسّط الطرف الأيمن.
خطوة 5.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
اطرح من كلا المتعادلين.
خطوة 7
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.