إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 1.1.1
اطرح من كلا المتعادلين.
خطوة 1.1.2
اطرح من كلا المتعادلين.
خطوة 1.2
اقسِم كل حد في على وبسّط.
خطوة 1.2.1
اقسِم كل حد في على .
خطوة 1.2.2
بسّط الطرف الأيسر.
خطوة 1.2.2.1
ألغِ العامل المشترك لـ .
خطوة 1.2.2.1.1
ألغِ العامل المشترك.
خطوة 1.2.2.1.2
اقسِم على .
خطوة 1.2.3
بسّط الطرف الأيمن.
خطوة 1.2.3.1
بسّط كل حد.
خطوة 1.2.3.1.1
احذِف العامل المشترك لـ و.
خطوة 1.2.3.1.1.1
أخرِج العامل من .
خطوة 1.2.3.1.1.2
ألغِ العوامل المشتركة.
خطوة 1.2.3.1.1.2.1
أخرِج العامل من .
خطوة 1.2.3.1.1.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.1.1.2.3
أعِد كتابة العبارة.
خطوة 1.2.3.1.2
احذِف العامل المشترك لـ و.
خطوة 1.2.3.1.2.1
أخرِج العامل من .
خطوة 1.2.3.1.2.2
ألغِ العوامل المشتركة.
خطوة 1.2.3.1.2.2.1
أخرِج العامل من .
خطوة 1.2.3.1.2.2.2
ألغِ العامل المشترك.
خطوة 1.2.3.1.2.2.3
أعِد كتابة العبارة.
خطوة 2
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3
خطوة 3.1
اطرح من كلا المتعادلين.
خطوة 3.2
بما أن العبارة في كل متعادل لها نفس القاسم، إذن يجب أن يكون البسطان متساويين.
خطوة 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 3.4
بسّط .
خطوة 3.4.1
أعِد كتابة بالصيغة .
خطوة 3.4.2
أعِد كتابة بالصيغة .
خطوة 3.4.3
أعِد كتابة بالصيغة .
خطوة 3.5
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 3.5.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 3.5.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 3.5.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 4