إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
بما أن الجذر يقع على المتعادل الأيمن، بدّل الأطراف بحيث يصبح على المتعادل الأيسر.
خطوة 2
خطوة 2.1
بما أن موجودة على المتعادل الأيمن، بدّل الأطراف بحيث تصبح على المتعادل الأيسر.
خطوة 2.2
بسّط .
خطوة 2.2.1
بسّط كل حد.
خطوة 2.2.1.1
طبّق خاصية التوزيع.
خطوة 2.2.1.2
اضرب في .
خطوة 2.2.1.3
اضرب في .
خطوة 2.2.1.4
طبّق خاصية التوزيع.
خطوة 2.2.1.5
اضرب في .
خطوة 2.2.2
بسّط بجمع الحدود.
خطوة 2.2.2.1
اطرح من .
خطوة 2.2.2.2
أضف و.
خطوة 2.3
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
خطوة 2.3.1
اطرح من كلا المتعادلين.
خطوة 2.3.2
اطرح من .
خطوة 2.4
أضف إلى كلا المتعادلين.
خطوة 2.5
اقسِم كل حد في على وبسّط.
خطوة 2.5.1
اقسِم كل حد في على .
خطوة 2.5.2
بسّط الطرف الأيسر.
خطوة 2.5.2.1
ألغِ العامل المشترك لـ .
خطوة 2.5.2.1.1
ألغِ العامل المشترك.
خطوة 2.5.2.1.2
اقسِم على .
خطوة 2.5.3
بسّط الطرف الأيمن.
خطوة 2.5.3.1
احذِف العامل المشترك لـ و.
خطوة 2.5.3.1.1
أخرِج العامل من .
خطوة 2.5.3.1.2
ألغِ العوامل المشتركة.
خطوة 2.5.3.1.2.1
أخرِج العامل من .
خطوة 2.5.3.1.2.2
ألغِ العامل المشترك.
خطوة 2.5.3.1.2.3
أعِد كتابة العبارة.
خطوة 3
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 4
خطوة 4.1
استخدِم لكتابة في صورة .
خطوة 4.2
بسّط الطرف الأيسر.
خطوة 4.2.1
بسّط .
خطوة 4.2.1.1
اضرب الأُسس في .
خطوة 4.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.1.2
ألغِ العامل المشترك لـ .
خطوة 4.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 4.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 4.2.1.2
بسّط.
خطوة 4.3
بسّط الطرف الأيمن.
خطوة 4.3.1
بسّط .
خطوة 4.3.1.1
طبّق قاعدة الضرب على .
خطوة 4.3.1.2
ارفع إلى القوة .
خطوة 4.3.1.3
ارفع إلى القوة .
خطوة 5