إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
اطرح من كلا المتعادلين.
خطوة 1.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.3
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 1.4
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
خطوة 1.4.1
اضرب في .
خطوة 1.4.2
اضرب في .
خطوة 1.4.3
اضرب في .
خطوة 1.4.4
اضرب في .
خطوة 1.5
اجمع البسوط على القاسم المشترك.
خطوة 1.6
اطرح من .
خطوة 1.7
انقُل السالب أمام الكسر.
خطوة 2
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 2.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.4
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.5
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.6
العوامل الأساسية لـ هي .
خطوة 2.6.1
لها العاملان و.
خطوة 2.6.2
لها العاملان و.
خطوة 2.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.8
اضرب .
خطوة 2.8.1
اضرب في .
خطوة 2.8.2
اضرب في .
خطوة 2.8.3
اضرب في .
خطوة 2.9
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.10
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.11
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 3
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
خطوة 3.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.2
ألغِ العامل المشترك لـ .
خطوة 3.2.2.1
أخرِج العامل من .
خطوة 3.2.2.2
أخرِج العامل من .
خطوة 3.2.2.3
ألغِ العامل المشترك.
خطوة 3.2.2.4
أعِد كتابة العبارة.
خطوة 3.2.3
اجمع و.
خطوة 3.2.4
اضرب في .
خطوة 3.2.5
ألغِ العامل المشترك لـ .
خطوة 3.2.5.1
ألغِ العامل المشترك.
خطوة 3.2.5.2
أعِد كتابة العبارة.
خطوة 3.3
بسّط الطرف الأيمن.
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.1.2
ألغِ العامل المشترك لـ .
خطوة 3.3.1.2.1
أخرِج العامل من .
خطوة 3.3.1.2.2
أخرِج العامل من .
خطوة 3.3.1.2.3
ألغِ العامل المشترك.
خطوة 3.3.1.2.4
أعِد كتابة العبارة.
خطوة 3.3.1.3
اجمع و.
خطوة 3.3.1.4
اضرب في .
خطوة 3.3.1.5
ألغِ العامل المشترك لـ .
خطوة 3.3.1.5.1
ألغِ العامل المشترك.
خطوة 3.3.1.5.2
أعِد كتابة العبارة.
خطوة 3.3.1.6
ألغِ العامل المشترك لـ .
خطوة 3.3.1.6.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 3.3.1.6.2
أخرِج العامل من .
خطوة 3.3.1.6.3
ألغِ العامل المشترك.
خطوة 3.3.1.6.4
أعِد كتابة العبارة.
خطوة 3.3.1.7
اضرب في .
خطوة 4
خطوة 4.1
أعِد كتابة المعادلة في صورة .
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
خطوة 4.2.1
اطرح من كلا المتعادلين.
خطوة 4.2.2
اطرح من .
خطوة 4.3
اقسِم كل حد في على وبسّط.
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
خطوة 4.3.3.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 5