إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
عيّن قيمة المجذور في بحيث تصبح أكبر من أو تساوي لإيجاد الموضع الذي تكون فيه العبارة معرّفة.
خطوة 2
خطوة 2.1
حوّل المتباينة إلى معادلة.
خطوة 2.2
حلّل المتعادل الأيسر إلى عوامل.
خطوة 2.2.1
أخرِج العامل من .
خطوة 2.2.1.1
أخرِج العامل من .
خطوة 2.2.1.2
أخرِج العامل من .
خطوة 2.2.1.3
أخرِج العامل من .
خطوة 2.2.1.4
أخرِج العامل من .
خطوة 2.2.1.5
أخرِج العامل من .
خطوة 2.2.1.6
أخرِج العامل من .
خطوة 2.2.1.7
أخرِج العامل من .
خطوة 2.2.2
حلّل إلى عوامل.
خطوة 2.2.2.1
حلّل إلى عوامل باستخدام اختبار الجذور النسبية.
خطوة 2.2.2.1.1
إذا كانت دالة متعددة الحدود لها معاملات عدد صحيح، فإن كل صفر نسبي سيكون بالصيغة والتي تكون فيها هي عامل الثابت و هي عامل المعامل الرئيسي.
خطوة 2.2.2.1.2
أوجِد كل تركيبة من تركيبات . هذه هي الجذور المحتملة للدالة متعددة الحدود.
خطوة 2.2.2.1.3
عوّض بـ وبسّط العبارة. في هذه الحالة، العبارة تساوي ، إذن هو جذر متعدد الحدود.
خطوة 2.2.2.1.3.1
عوّض بـ في متعدد الحدود.
خطوة 2.2.2.1.3.2
ارفع إلى القوة .
خطوة 2.2.2.1.3.3
ارفع إلى القوة .
خطوة 2.2.2.1.3.4
اضرب في .
خطوة 2.2.2.1.3.5
أضف و.
خطوة 2.2.2.1.3.6
اضرب في .
خطوة 2.2.2.1.3.7
أضف و.
خطوة 2.2.2.1.3.8
اطرح من .
خطوة 2.2.2.1.4
بما أن جذر معروف، اقسِم متعدد الحدود على لإيجاد ناتج قسمة متعدد الحدود. ويمكن بعد ذلك استخدام متعدد الحدود لإيجاد الجذور المتبقية.
خطوة 2.2.2.1.5
اقسِم على .
خطوة 2.2.2.1.5.1
عيّن متعددات الحدود التي ستتم قسمتها. وفي حالة عدم وجود حد لكل أُس، أدخل حدًا واحدًا بقيمة .
- | + | + | - |
خطوة 2.2.2.1.5.2
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
- | + | + | - |
خطوة 2.2.2.1.5.3
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
- | + | + | - | ||||||||
+ | - |
خطوة 2.2.2.1.5.4
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
- | + | + | - | ||||||||
- | + |
خطوة 2.2.2.1.5.5
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
خطوة 2.2.2.1.5.6
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
خطوة 2.2.2.1.5.7
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
خطوة 2.2.2.1.5.8
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
خطوة 2.2.2.1.5.9
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
خطوة 2.2.2.1.5.10
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
خطوة 2.2.2.1.5.11
أخرِج الحدود التالية من المقسوم الأصلي لأسفل نحو المقسوم الحالي.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 2.2.2.1.5.12
اقسِم الحد ذا أعلى رتبة في المقسوم على الحد ذي أعلى رتبة في المقسوم عليه .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
خطوة 2.2.2.1.5.13
اضرب حد ناتج القسمة الجديد في المقسوم عليه.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
خطوة 2.2.2.1.5.14
يلزم طرح العبارة من المقسوم، لذا غيّر جميع العلامات في
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
خطوة 2.2.2.1.5.15
بعد تغيير العلامات، أضف المقسوم الأخير من متعدد الحدود المضروب فيه لإيجاد المقسوم الجديد.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
خطوة 2.2.2.1.5.16
بما أن الباقي يساوي ، إذن الإجابة النهائية هي ناتج القسمة.
خطوة 2.2.2.1.6
اكتب في صورة مجموعة من العوامل.
خطوة 2.2.2.2
احذِف الأقواس غير الضرورية.
خطوة 2.3
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أوجِد قيمة في .
خطوة 2.5.2.1
استخدِم الصيغة التربيعية لإيجاد الحلول.
خطوة 2.5.2.2
عوّض بقيم و و في الصيغة التربيعية وأوجِد قيمة .
خطوة 2.5.2.3
بسّط.
خطوة 2.5.2.3.1
بسّط بَسْط الكسر.
خطوة 2.5.2.3.1.1
ارفع إلى القوة .
خطوة 2.5.2.3.1.2
اضرب .
خطوة 2.5.2.3.1.2.1
اضرب في .
خطوة 2.5.2.3.1.2.2
اضرب في .
خطوة 2.5.2.3.1.3
اطرح من .
خطوة 2.5.2.3.1.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.5
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.1.6
أعِد كتابة بالصيغة .
خطوة 2.5.2.3.2
اضرب في .
خطوة 2.5.2.4
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.5.2.4.1
بسّط بَسْط الكسر.
خطوة 2.5.2.4.1.1
ارفع إلى القوة .
خطوة 2.5.2.4.1.2
اضرب .
خطوة 2.5.2.4.1.2.1
اضرب في .
خطوة 2.5.2.4.1.2.2
اضرب في .
خطوة 2.5.2.4.1.3
اطرح من .
خطوة 2.5.2.4.1.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.1.5
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.1.6
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.2
اضرب في .
خطوة 2.5.2.4.3
غيّر إلى .
خطوة 2.5.2.4.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.4.5
أخرِج العامل من .
خطوة 2.5.2.4.6
أخرِج العامل من .
خطوة 2.5.2.4.7
انقُل السالب أمام الكسر.
خطوة 2.5.2.5
بسّط العبارة لإيجاد قيمة الجزء من .
خطوة 2.5.2.5.1
بسّط بَسْط الكسر.
خطوة 2.5.2.5.1.1
ارفع إلى القوة .
خطوة 2.5.2.5.1.2
اضرب .
خطوة 2.5.2.5.1.2.1
اضرب في .
خطوة 2.5.2.5.1.2.2
اضرب في .
خطوة 2.5.2.5.1.3
اطرح من .
خطوة 2.5.2.5.1.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.5.1.5
أعِد كتابة بالصيغة .
خطوة 2.5.2.5.1.6
أعِد كتابة بالصيغة .
خطوة 2.5.2.5.2
اضرب في .
خطوة 2.5.2.5.3
غيّر إلى .
خطوة 2.5.2.5.4
أعِد كتابة بالصيغة .
خطوة 2.5.2.5.5
أخرِج العامل من .
خطوة 2.5.2.5.6
أخرِج العامل من .
خطوة 2.5.2.5.7
انقُل السالب أمام الكسر.
خطوة 2.5.2.6
الإجابة النهائية هي تركيبة من كلا الحلّين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 2.7
حدد المعامل الرئيسي.
خطوة 2.7.1
الحد الرئيسي في متعدد الحدود هو الحد ذو الدرجة الأعلى.
خطوة 2.7.2
المعامل الرئيسي في متعدد الحدود هو معامل الحد الرئيسي.
خطوة 2.8
بما أنه لا توجد نقاط تقاطع حقيقية مع المحور السيني والمعامل الرئيسي موجب، إذن القطع المكافئ مفتوح إلى أعلى وقيمة أكبر دائمًا من .
جميع الأعداد الحقيقية
جميع الأعداد الحقيقية
خطوة 3
النطاق هو جميع الأعداد الحقيقية.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4