الرياضيات المتناهية الأمثلة

أوجد الحلول وتعدديتها f(x)=x^4-8x^3+12x^2+24x-45
خطوة 1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.1
حلّل المتعادل الأيسر إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.1
أعِد تجميع الحدود.
خطوة 2.1.2
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.2.1
أخرِج العامل من .
خطوة 2.1.2.2
أخرِج العامل من .
خطوة 2.1.2.3
أخرِج العامل من .
خطوة 2.1.3
أعِد كتابة بالصيغة .
خطوة 2.1.4
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.1.5
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.5.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.1.5.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.1.6
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.7
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 2.1.7.1
أخرِج العامل من .
خطوة 2.1.7.2
أخرِج العامل من .
خطوة 2.1.8
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 2.1.9
حلّل إلى عوامل باستخدام طريقة AC.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.9.1
ضع في اعتبارك الصيغة . ابحث عن زوج من الأعداد الصحيحة حاصل ضربهما ومجموعهما . في هذه الحالة، حاصل ضربهما ومجموعهما .
خطوة 2.1.9.2
اكتب الصيغة المحلّلة إلى عوامل مستخدمًا هذه الأعداد الصحيحة.
خطوة 2.1.10
حلّل إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1.10.1
استبدِل كافة حالات حدوث بـ .
خطوة 2.1.10.2
احذِف الأقواس غير الضرورية.
خطوة 2.2
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 2.3
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.3.2
أوجِد قيمة في .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.1
أضف إلى كلا المتعادلين.
خطوة 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 2.3.2.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.2.3.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 2.3.2.3.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 2.3.2.3.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 2.4
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.4.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.4.2
أضف إلى كلا المتعادلين.
خطوة 2.5
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 2.5.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 2.5.2
أضف إلى كلا المتعادلين.
خطوة 2.6
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة. تعدد الجذر هو عدد المرات التي يظهر فيها الجذر.
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
(تعدد )
خطوة 3