إدخال مسألة...
الرياضيات المتناهية الأمثلة
خطوة 1
خطوة 1.1
ألغِ العامل المشترك لـ .
خطوة 1.1.1
انقُل السالب الرئيسي في إلى بسط الكسر.
خطوة 1.1.2
أخرِج العامل من .
خطوة 1.1.3
ألغِ العامل المشترك.
خطوة 1.1.4
أعِد كتابة العبارة.
خطوة 1.2
اضرب في .
خطوة 2
اطرح من كلا المتعادلين.
خطوة 3
اطرح من .
خطوة 4
خطوة 4.1
أخرِج العامل من .
خطوة 4.1.1
أخرِج العامل من .
خطوة 4.1.2
أخرِج العامل من .
خطوة 4.1.3
أخرِج العامل من .
خطوة 4.1.4
أخرِج العامل من .
خطوة 4.1.5
أخرِج العامل من .
خطوة 4.2
حلّل إلى عوامل.
خطوة 4.2.1
حلّل إلى عوامل بالتجميع.
خطوة 4.2.1.1
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 4.2.1.1.1
أخرِج العامل من .
خطوة 4.2.1.1.2
أعِد كتابة في صورة زائد
خطوة 4.2.1.1.3
طبّق خاصية التوزيع.
خطوة 4.2.1.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.2.1.2.1
جمّع أول حدين وآخر حدين.
خطوة 4.2.1.2.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 4.2.1.3
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 4.2.2
احذِف الأقواس غير الضرورية.
خطوة 5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 6
خطوة 6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 6.2
أوجِد قيمة في .
خطوة 6.2.1
أضف إلى كلا المتعادلين.
خطوة 6.2.2
اقسِم كل حد في على وبسّط.
خطوة 6.2.2.1
اقسِم كل حد في على .
خطوة 6.2.2.2
بسّط الطرف الأيسر.
خطوة 6.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 6.2.2.2.1.2
اقسِم على .
خطوة 7
خطوة 7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 7.2
أوجِد قيمة في .
خطوة 7.2.1
أضف إلى كلا المتعادلين.
خطوة 7.2.2
اقسِم كل حد في على وبسّط.
خطوة 7.2.2.1
اقسِم كل حد في على .
خطوة 7.2.2.2
بسّط الطرف الأيسر.
خطوة 7.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 7.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 7.2.2.2.1.2
اقسِم على .
خطوة 8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 9
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: