الرياضيات المتناهية الأمثلة

خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
حلّل كل حد إلى عوامل.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.2
لكتابة على هيئة كسر بقاسم مشترك، اضرب في .
خطوة 2.3
اكتب كل عبارة قاسمها المشترك ، بضربها في العامل المناسب للعدد .
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
اضرب في .
خطوة 2.3.2
اضرب في .
خطوة 2.3.3
اضرب في .
خطوة 2.3.4
اضرب في .
خطوة 2.4
اجمع البسوط على القاسم المشترك.
خطوة 2.5
أضف و.
خطوة 3
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
خطوة 3.3
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 3.4
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 3.5
العوامل الأساسية لـ هي .
انقر لعرض المزيد من الخطوات...
خطوة 3.5.1
لها العاملان و.
خطوة 3.5.2
لها العاملان و.
خطوة 3.6
اضرب .
انقر لعرض المزيد من الخطوات...
خطوة 3.6.1
اضرب في .
خطوة 3.6.2
اضرب في .
خطوة 3.7
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 3.8
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 3.9
المضاعف المشترك الأصغر لـ يساوي حاصل ضرب الجزء العددي في الجزء المتغير.
خطوة 4
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
اضرب كل حد في في .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 4.2.2
اجمع و.
خطوة 4.2.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.3.1
ألغِ العامل المشترك.
خطوة 4.2.3.2
أعِد كتابة العبارة.
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
أخرِج العامل من .
خطوة 4.3.1.2
ألغِ العامل المشترك.
خطوة 4.3.1.3
أعِد كتابة العبارة.
خطوة 5
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 5.1
أعِد كتابة المعادلة في صورة .
خطوة 5.2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.1
اقسِم كل حد في على .
خطوة 5.2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 5.2.2.1.1
ألغِ العامل المشترك.
خطوة 5.2.2.1.2
اقسِم على .
خطوة 6
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: