الرياضيات المتناهية الأمثلة

Resolver para a 2/3+(3-7a)/(21a-63)=(7a+1)/(a-3)
خطوة 1
أخرِج العامل من .
انقر لعرض المزيد من الخطوات...
خطوة 1.1
أخرِج العامل من .
خطوة 1.2
أخرِج العامل من .
خطوة 1.3
أخرِج العامل من .
خطوة 2
أوجِد القاسم المشترك الأصغر للحدود في المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 2.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 2.3
بما أن ليس لها عوامل بخلاف و.
هي عدد أولي
خطوة 2.4
لها العاملان و.
خطوة 2.5
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 2.6
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 2.7
اضرب في .
خطوة 2.8
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 2.9
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2.10
المضاعف المشترك الأصغر لبعض الأعداد هو أصغر عدد تمثل الأعداد عوامله.
خطوة 3
اضرب كل حد في في لحذف الكسور.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
اضرب كل حد في في .
خطوة 3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.1.1
أخرِج العامل من .
خطوة 3.2.1.1.2
ألغِ العامل المشترك.
خطوة 3.2.1.1.3
أعِد كتابة العبارة.
خطوة 3.2.1.2
اضرب في .
خطوة 3.2.1.3
طبّق خاصية التوزيع.
خطوة 3.2.1.4
اضرب في .
خطوة 3.2.1.5
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.2.1.6
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.6.1
ألغِ العامل المشترك.
خطوة 3.2.1.6.2
أعِد كتابة العبارة.
خطوة 3.2.1.7
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.2.1.7.1
ألغِ العامل المشترك.
خطوة 3.2.1.7.2
أعِد كتابة العبارة.
خطوة 3.2.2
بسّط بجمع الحدود.
انقر لعرض المزيد من الخطوات...
خطوة 3.2.2.1
اطرح من .
خطوة 3.2.2.2
أضف و.
خطوة 3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.1
أعِد الكتابة باستخدام خاصية الإبدال لعملية الضرب.
خطوة 3.3.2
اجمع و.
خطوة 3.3.3
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 3.3.3.1
ألغِ العامل المشترك.
خطوة 3.3.3.2
أعِد كتابة العبارة.
خطوة 3.3.4
طبّق خاصية التوزيع.
خطوة 3.3.5
اضرب.
انقر لعرض المزيد من الخطوات...
خطوة 3.3.5.1
اضرب في .
خطوة 3.3.5.2
اضرب في .
خطوة 4
أوجِد حل المعادلة.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
انقُل كل الحدود التي تحتوي على إلى المتعادل الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
اطرح من كلا المتعادلين.
خطوة 4.1.2
اطرح من .
خطوة 4.2
انقُل كل الحدود التي لا تحتوي على إلى المتعادل الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
أضف إلى كلا المتعادلين.
خطوة 4.2.2
أضف و.
خطوة 4.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
اقسِم كل حد في على .
خطوة 4.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.2.1.1
ألغِ العامل المشترك.
خطوة 4.3.2.1.2
اقسِم على .
خطوة 4.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1
احذِف العامل المشترك لـ و.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1.1
أخرِج العامل من .
خطوة 4.3.3.1.2
ألغِ العوامل المشتركة.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.3.1.2.1
أخرِج العامل من .
خطوة 4.3.3.1.2.2
ألغِ العامل المشترك.
خطوة 4.3.3.1.2.3
أعِد كتابة العبارة.
خطوة 4.3.3.2
انقُل السالب أمام الكسر.
خطوة 5
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية: