الرياضيات المتناهية الأمثلة

Resolver para y r=- الجذر التربيعي لـ x^2+y^2
خطوة 1
أعِد كتابة المعادلة في صورة .
خطوة 2
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 2.1
اقسِم كل حد في على .
خطوة 2.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 2.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 2.2.2
اقسِم على .
خطوة 2.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 2.3.1
انقُل العدد سالب واحد من قاسم .
خطوة 2.3.2
أعِد كتابة بالصيغة .
خطوة 3
لحذف الجذر في المتعادل الأيسر، ربّع كلا المتعادلين.
خطوة 4
بسّط كل متعادل.
انقر لعرض المزيد من الخطوات...
خطوة 4.1
استخدِم لكتابة في صورة .
خطوة 4.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1
اضرب الأُسس في .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.1
طبّق قاعدة القوة واضرب الأُسس، .
خطوة 4.2.1.1.2
ألغِ العامل المشترك لـ .
انقر لعرض المزيد من الخطوات...
خطوة 4.2.1.1.2.1
ألغِ العامل المشترك.
خطوة 4.2.1.1.2.2
أعِد كتابة العبارة.
خطوة 4.2.1.2
بسّط.
خطوة 4.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 4.3.1.1
طبّق قاعدة الضرب على .
خطوة 4.3.1.2
ارفع إلى القوة .
خطوة 4.3.1.3
اضرب في .
خطوة 5
أوجِد قيمة .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
اطرح من كلا المتعادلين.
خطوة 5.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 5.3
بما أن كلا الحدّين هما مربعان كاملان، حلّل إلى عوامل باستخدام قاعدة الفرق بين مربعين، حيث و.
خطوة 5.4
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 5.4.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 5.4.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 5.4.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.