الرياضيات المتناهية الأمثلة

خطوة 1
اطرح من كلا طرفي المتباينة.
خطوة 2
حوّل المتباينة إلى معادلة.
خطوة 3
حلّل إلى عوامل باستخدام قاعدة المربع الكامل.
انقر لعرض المزيد من الخطوات...
خطوة 3.1
أعِد ترتيب الحدود.
خطوة 3.2
أعِد كتابة بالصيغة .
خطوة 3.3
تحقق من أن الحد الأوسط يساوي ضعف حاصل ضرب الأعداد المربعة في الحد الأول والحد الثالث.
خطوة 3.4
أعِد كتابة متعدد الحدود.
خطوة 3.5
حلّل إلى عوامل باستخدام قاعدة ثلاثي حدود المربع الكامل ، حيث و.
خطوة 4
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 5
أضف إلى كلا المتعادلين.
خطوة 6
استخدِم كل جذر من الجذور لإنشاء فترات اختبار.
خطوة 7
اختر قيمة اختبار من كل فترة وعوض بهذه القيمة في المتباينة الأصلية لتحدد أي الفترات تستوفي المتباينة.
انقر لعرض المزيد من الخطوات...
خطوة 7.1
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 7.1.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 7.1.2
استبدِل بـ في المتباينة الأصلية.
خطوة 7.1.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 7.2
اختبر قيمة في الفترة لترى ما إذا كانت تجعل المتباينة صحيحة أم لا.
انقر لعرض المزيد من الخطوات...
خطوة 7.2.1
اختر قيمة من الفترة ولاحظ ما إذا كانت هذه القيمة تجعل المتباينة الأصلية صحيحة.
خطوة 7.2.2
استبدِل بـ في المتباينة الأصلية.
خطوة 7.2.3
الطرف الأيسر أكبر من الطرف الأيمن ، ما يعني أن العبارة المُعطاة صحيحة دائمًا.
True
True
خطوة 7.3
قارن بين الفترات لتحدد أيًا منها يستوفي المتباينة الأصلية.
صحيحة
صحيحة
صحيحة
صحيحة
خطوة 8
يتكون الحل من جميع الفترات الصحيحة.
أو
خطوة 9
يمكن عرض النتيجة بصيغ متعددة.
صيغة التباين:
ترميز الفترة:
خطوة 10